

Screw Pumps Series SPF

SPF

Application

For the delivery of fuel oils, lube oils, hydraulic oils or other lubricating liquids. The fluid media must not contain any abrasive particles nor attack the pump materials chemically.

Main fields of application

SPF pumps operate as transfer, booster and burner operation pumps in fuel oil engineering, as transfer and filling pumps in tank farms as well as lube-oil pumps in any industrial branches. They are moreover used for pressure generation in oil-hydraulic plants of all kinds.

Design

Self-priming three-screw type of pump with internal bearing. The hardened and ground screws run in an exchangeable casing insert.

The driving screw is hydraulically balanced. The axial thrust of the working screws is absorbed by the endside pump cover. Their drive is hydraulic. The thread flanks merely transmit the torque resulting from the liquid friction. Thus, the thread flanks are practically stress-free and not subject to any wear. All sliding parts are lubricated by the delivery medium being within the range of full liquid friction.

The radial and axial bearing of the driving screw with pump size 10 and 20 is by the balancing piston guided in the bearing ring, with pump size 40 by a groove ball bearing.

A maintenance-free mechanical seal is provided as the shaft sealing.

Sealing chamber and suction chamber are interconnected by way of a return gallery. Thus, independently of the delivery pres-sure at the shaft sealing, only the suction pressure becomes effective.

Complete units being supplied, the connection pump/driving motor is by a pump bracket with mounting foot.

Operation

Owing to a special profiling of the thread flanks, the three screws from sealed chambers the contents of which are axially and completely continuously shifted from the suction to the pump side of the pump as the screws turn. There will be no turbulence in spite of the screw rotation. The constant chamber volume excludes squeezing.

Noise/Pulsation

The structural design and operation of the screw pump ensure a very low noise level and an almost pulsation-free delivery.

Twin units

For all plants requiring stand-by pumps, twin units are supplied. See descriptive literature VM 533.

Shaft sealing

By means of a maintenance-free mechanical seal of the unbalanced type.

Material design:	
Rotating seal ring	Tungsten carbide, Co-binder
Stationary seal ring	Tungsten carbide, Co-binder
Joint ring	FPM
Spring	CrNiMo steel
Metal parts	Cr steel

Performance data

Capacity	Q up to 1	12 l/min	1	resp.	6720	l/h ①
Temperature of pumped	the fluid	t		up to	150	°C
Inlet pressure		pz		up to	5	bar
Pump outlet pre	essure	\mathbf{p}_{d}		up to	40	bar ②
Viscosity range		ν	3	up to	750	mm²/s
Delivery flange		DN_{d}	20	up to	25	mm

① With n = 2900 1/min and $= 750 \text{ mm}^2/\text{s}$

2 With higher temperatures, please inquire.

③ For the attainable delivery pressure as a function of viscosity and speed, please refer to the individual characteristics. The pressure data only apply to nearly static pressure load. With dynamic pressure change load, please inquire.

Pressure relief valves

As an overload protection, installed in each pump is a pressure relief valve which, with all designs, is set at a response pressure approx. 10% above the operating pressure.

In case different response pressures are requested, same must be indicated in the order.

Flanges/Connections

Flanges	Suction side: Delivery side:	PN 16, DIN EN 1092-2 PN 40, DIN EN 1092-2
Connections	SPF without filter: SPF with filter:	M1, M2 Pressure gauge B7 Draining filter casing E7 Venting filter casing M1, M2, M3 Pressure gauge

Materials

Denomination	Part Material design							
	No.	W 20	W 16	W 8				
Pump casing	1	EN-GJL-250	EN-GJL-250	EN-GJS-400-15				
Casing insert	2	AlMgSi1	EN-GJL-250	AlMgSi1				
Pump cover								
driving side	3	EN-GJL-250	ENI-GJL-250	EN-GJS-400-15				
end side	4	EN-GJL-250	ENI-GJL-250	EN-GJS-400-15				
Casing cover	7 ①	EN-GJL-250	ENI-GJL-250	EN-GJS-400-15				
Filter casing	9 🛈	EN-GJL-250	ENI-GJL-250	EN-GJS-400-15				
Bearing bush	10	AlMgSi1	ENI-GJL-250	AlMgSi1				
Driving screw	12	16MnCrS 5	16MnCrS 5	16MnCrS 5				
Idler screw	13	16MnCrS 5	16MnCrS 5	16MnCrS 5				
Wire mash at	481 ①	Steel	Steel	Stahl				
radial screen filter		galvanized	galvanized	verzinkt				

1 for design with filter only

Series SPF

Pump dimensions

SPF without filter

Dimensions in mm Subject to alterations

 $z_1/z_2/z_3$ = No. of holes

Sense of rotation: clockwise as seen from the driving side

Pump size							Pump	dimen	sions								Shaf	t end	
SPF	a ₁	b ₁	C ₁	g	g ₁	İ ₁	k ₁	n	\mathbf{q}_1	q ₂	r	S ₁	y ₃	y ₄	Z ₁	d	I	t	u
10	130	82,55	106	90	45	42	232	155	54	110	95	11	12	9	2	14	30	16	5
20	175	101,6	146	95	56	53	280	177	77	125	110	14	15	10	2	19	40	21,5	6
40	175	101,6	146	110	60	53	330	198	77	135	146	14	15	10	2	19	40	21,5	6

Pump size	Imp size Connecting dimensions Suction side ① Delivery side ②										Pressure		
											gauge		
SPF	DNs	А	В	D	y 1	Z ₂	DN_{d}	E	F	Н	y 1	Z 3	M1/M2
10	20	105	75	14	18	4	20	105	75	14	18	4	G 1/4
20	25	120	85	14	18	4	25	120	85	14	18	4	G 1/4
40	32	140	100	18	18	4	25	120	85	14	18	4	G 1/4

① PN 16, DIN EN 1092-2; ② PN 40, DIN EN 1092-2