Announcement

May 2021

Product discontinuation: PS3N series switching power supplies

IDEC would like to inform you that we will discontinue our PS3N series switching power supplies.

1. Products to be discontinued

We will discontinue all PS3N series switching power supplies.
Please see page 2 for list of part numbers.

The following accessories will be also discontinued.

L-shaped mounting bracket	Frame cover
PS9Z-3N2A	PS9Z-3N9AN
PS9Z-3N2B	PS9Z-3N9BN
PS9Z-3N2C	PS9Z-3N9CN
PS9Z-3N2D	PS9Z-3N9DN
PS9Z-3N2E	PS9Z-3N9EN
PS9Z-3N2F	PS9Z-3N9FN

Mounting plate	L-shaped mounting bracket 2
PS9Z-3N1A	PS9Z-3N3B
PS9Z-3N1B	PS9Z-3N3C
PS9Z-3N1C	PS9Z-3N3D
PS9Z-3N1D	PS9Z-3N3F
PS9Z-3N1E	
PS9Z-3N1F	

Note: Special products are also included.

2. Recommended replacements

PS3V series switching power supplies to be launched in June 2021.
Notes:
a) PS3V series will not have connector type or open frame type.
b) Please refer to the replacement list from p. 2 to p.6.
c) Regarding the specification differences, please refer to the replacement manual "From PS3N series switching power supplies to PS3V series switching power supplies (20SMBE104)"

3. Schedule (TBD)

- Discontinued date: Immediately while supplies last.

Note: We will not provide the discontinued products for maintenance.

Products to be discontinued: PS3N			Recommended replacements: PS3V				
Part number	Shape	I/O Terminal	Part number	Shape	I/O Terminal		
PS3N-C12A1N	Open frame	Terminal block	PS3V-030AF12C	With cover	Terminal block		
PS3N-C12A1CN	With cover	Terminal block	PS3V-030AF12C	With cover	Terminal block		
PS3N-C12A1AN	Open frame	Connector	Please use terminal block type				
PS3N-C12A1DN	With cover	Connector					
PS3N-C24A1N	Open frame	Terminal block	PS3V-030AF24C	With cover	Terminal block		
PS3N-C24A1CN	With cover	Terminal block					
PS3N-C24A1AN	Open frame	Connector	Please use terminal block type				
PS3N-C24A1DN	With cover	Connector					

Note: Special products are also included.

Comparison of specifications (PS3N-D24A**N -> PS3V-050AF24C)

Description			PS3N-D24A**	PS3V-050AF24C
$\begin{aligned} & \text { 言 } \\ & \stackrel{\rightharpoonup}{C} \end{aligned}$	Rated Input Voltage (Single-phase two-wire)		100V AC (Voltage Range: 85 to 132 V AC/105 to 170 V DC) 200V AC (Voltage Range: 170 to 264 V AC/210 to 340 V DC)	100 to 240 V AC (Voltage Range: 85 to 264V AC)
	Frequency		47 Hz to 63 Hz	47 Hz to 63Hz
	Input Curre (at rated ou		100V: 1.15A (Typ.), 200V: 0.65A (Typ.)	100V: 1.1A (Typ.), 230V: 0.6A (Typ.)
	Inrush Curren		100V: 40A max., 200V: 60A max.	18A typ. (at 100V AC), 45A typ. (at 230V AC) (*1)
	Leakage Cur	rent	100V: 0.5mA max., 200V: 1 mA max.	120V: 0.5mA max., 240V: 1 mA max.
	Efficiency (Typ		83\%	87\%/100VAC, 87\%/230VAC (at rated output)
	Rated Voltag	e/Current	24V, 2.3 A	$24 \mathrm{~V}, 2.3 \mathrm{~A}$
	Adjustable V Range	Itage	$\pm 10 \%$	$\pm 10 \%$ (Adjustable by front and V.ADJ volume)
	Output Holdi	ng Time	$20 \mathrm{~ms} \mathrm{min}. \mathrm{(at} \mathrm{rated} \mathrm{input} \mathrm{and} \mathrm{output)}$	17ms Typ. (100V AC), 125ms Typ. (230V AC) (at rated output)
	Start Time		$400 \mathrm{~ms} \mathrm{max}$. (at rated input and output)	$650 \mathrm{~ms} \mathrm{max}$. (at rated input and output)
	Rise Time		200 ms max . (at rated input and output)	200 ms max . (at rated input and output)
	Input Flu	ctuation	96 mV max.	0.4\% max.
	\simeq Load Flu	ctuation	150 mV max.	1\% max.
	$\stackrel{\text { Tempera }}{\stackrel{\circ}{\bar{\sigma}}}$ Tluctuation		290 mV max. (-10 to $50^{\circ} \mathrm{C}$)	$0.05 \% /{ }^{\circ} \mathrm{C}$ max. (-10 to $50^{\circ} \mathrm{C}$)
	\% Ripple	-25 to $10^{\circ} \mathrm{C}$	-	4\%p-p max.
	¢ (including	-10 to $0^{\circ} \mathrm{C}$	200 mV max.	1.5\%p-p max.
	noise)	0 to $50^{\circ} \mathrm{C}$	150 mV max.	1\%p-p max.
	Overcurrent Protection		105\% min. (auto reset) (*2)	105\% min. (auto reset) (*2)
	Overvoltage Protection		Output off at 130% (Typ.), reset by turning on the input again (*3)	Output off at 120% min., reset by turning on the input again
	Operation Indicator		LED (green)	LED (green)
Dielectric Strength			Between input and output terminals: 2000V AC, 1 minute Between input and ground terminals: 2000V AC, 1 minute Between output and ground terminals: 500 V AC, 1 minute	Between input and output terminals: 3000V AC, 1 minute Between input and ground terminals: 2000V AC, 1 minute Between output and ground terminals: 500 V AC, 1 minute
Insulation Resistance			$100 \mathrm{M} \Omega$ min. 500 V DC megger (at $25^{\circ} \mathrm{C}, 70 \% \mathrm{RH}$) (between input and output terminals, between input and ground terminals)	$100 \mathrm{M} \Omega$ min. 500 V DC megger (at $25^{\circ} \mathrm{C}, 70 \% \mathrm{RH}$) (between input and output terminals, between input and ground terminals)
Operating Temperature			-10 to $60^{\circ} \mathrm{C}$ (no freezing, see output derating) (*4)	-25 to $70^{\circ} \mathrm{C}$ (no freezing, see output derating)
Storage Temperature			-30 to $75^{\circ} \mathrm{C}$ (no freezing)	-25 to $75^{\circ} \mathrm{C}$ (no freezing)
Operating Humidity			20 to $90 \% \mathrm{RH}$ (no condensation)	20 to $90 \% \mathrm{RH}$ (no condensation)
Vibration Resistance			10 to $55 \mathrm{~Hz}, 20 \mathrm{~m} / \mathrm{s}^{2}$ constant, sweep cycle 1 minute, 2 hours each in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes	10 to $55 \mathrm{~Hz}, 2 \mathrm{G}$ constant, 2 hours each in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes
Shock Resistance			$200 \mathrm{~m} / \mathrm{s}^{2}, 11 \mathrm{~ms}, 1$ shock each in 6 axes	$200 \mathrm{~m} / \mathrm{s}^{2}, 11 \mathrm{~ms}, 1$ shock each in 6 axes
$\stackrel{0}{3}$ $\stackrel{0}{0}$ $\stackrel{\rightharpoonup}{\omega}$	Dimensions (mm)		$\begin{aligned} & 85 \mathrm{H} \times 33 \mathrm{~W} \times 118.5 \mathrm{D} \\ & \text { (with cover: } 85 \mathrm{H} \times 37 \mathrm{~W} \times 118.5 \mathrm{D} \text {) } \end{aligned}$	$80 \mathrm{H} \times 36 \mathrm{~W} \times 99 \mathrm{D}$ (with cover)
	Weight (approx.)		230 g	230 g
	Terminal Screw		M3.5	M3.5
	Terminal Arrangement			

*1) $\mathrm{Ta}=25^{\circ} \mathrm{C}$, cold start.
*2) Overload for 30 seconds or longer may damage the internal elements.
*3) Output off.
*4) The initial fluctuation time of the output voltage maybe longer for operations at low temperature.

