
Parallel Style Air Gripper

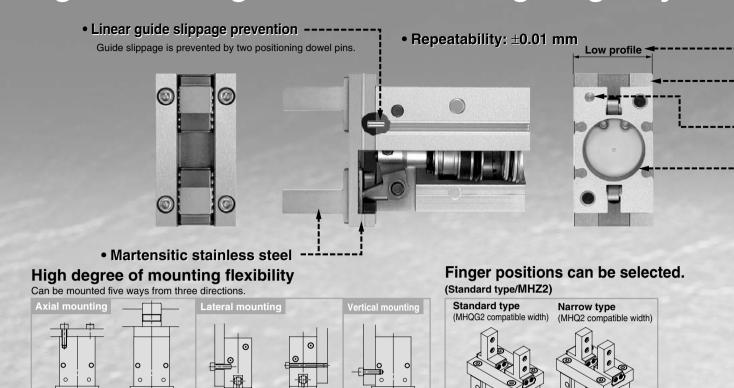
Series MHZ

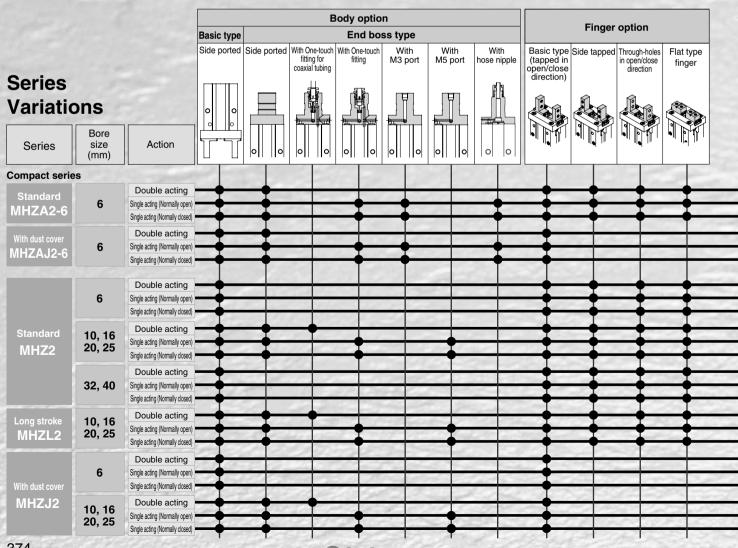
MHZ MHF MHL

MHR

MHK MHS

MHC MHT MHY


MHW


-X 🗆

MA

Integral linear guide used for high rigidity

Using tapped holes Using end boss

and high precision

• Body thickness tolerance: ±0.05 mm

 No guide protrusion in direction of body thickness

• Improved remounting accuracy Positioning dowel pin holes provided

Top mounting centering location
 Mounting is more secure with a depth 0.5
 to 2 mm greater than conventional types.

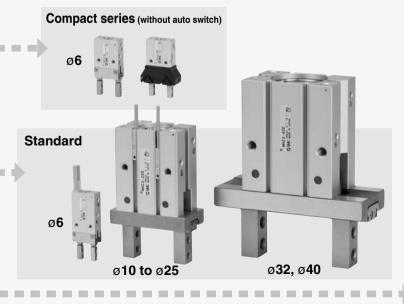
Integral guide rail § construction

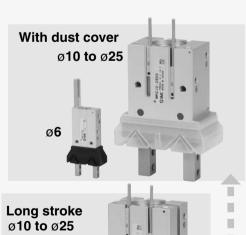
Accommodates diverse workpiece diameters with a single unit

■ Nearly double the standard stroke

■ Long stroke are also compact and lightweight

	Opening/Closing stroke (mm) (Open-Closed)		
Series		Mass (g)	Body thickness (mm)
MHZL2-10	8 (4)	60	16.4
MHZL2-16	12 (6)	135	23.6
MHZL2-20	18 (10)	270	27.6
MHZL2-25	22 (14)	470	33.6


Values inside () are for standard series MHZ2.


Long stroke

MHZL2

A wide variety of types and broad size variations

MHZ MHF

MHL

MHR

MHK

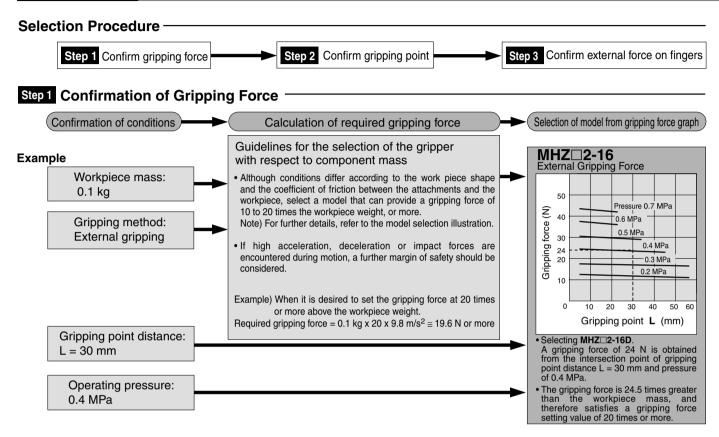
MHS

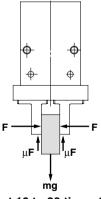
МНТ

MHY

MHW -X□

MRHQ


MA D-□


Series MHZ

Model Selection

Model Selection

Model Selection Illustration

"Gripping force at least 10 to 20 times the workpiece weight"

The "10 to 20 times or more of the workpiece weight" recommended by SMC is calculated with a safety margin of a=4, which allows for impacts that occur during normal transportation, etc.

When μ = 0.2	When μ = 0.1	
$F = \frac{mg}{2 \times 0.2} \times 4$ = 10 x mg	$F = \frac{mg}{2 \times 0.1} \times 4$ = 20 x mg	
10 x Workpiece weight	20 x Workpiece weight	

When gripping a workpiece as in the figure to the left, and with the following definitions,

F: Gripping force (N)

μ: Coefficient of friction between the attachments and the workpiece

m: Workpiece mass (kg)

g: Gravitational acceleration (= 9.8 m/s²)

mg: Workpiece weight (N)

the conditions under which the workpiece will not drop are

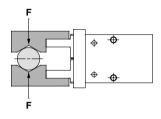
Number of fingers

and therefore,

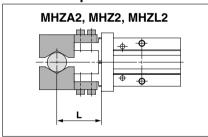
$$F > \frac{mg}{2 \times \mu}$$

With "a" representing the extra margin, "F" is determined by the following formula:

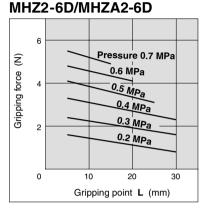
$$F = \frac{mg}{2 x \mu} x a$$

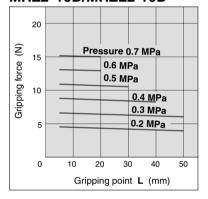

Note) • Even in cases where the coefficient of friction is greater than $\mu = 0.2$, for reasons of safety, select a gripping force which is at least 10 to 20 times greater than the workniece weight as recommended by SMC.

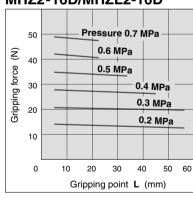
greater than the workpiece weight, as recommended by SMC.

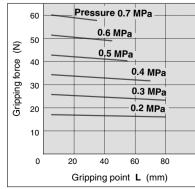

• If high acceleration, deceleration or impact forces are encountered during motion, a further margin of safety should be considered.

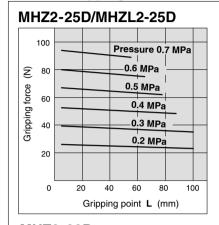
Step 1 Effective Gripping Force: Series MHZ□2/Double Acting/External Gripping Force

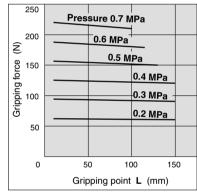

Indication of effective gripping force
 The effective gripping force shown in the graphs
 to the right is expressed as F, which is the thrust
 of one finger, when both fingers and attachments
 are in full contact with the workpiece as shown in
 the figure below.

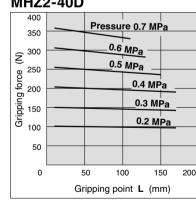

External Grip


External Gripping Force


MHZ2-10D/MHZL2-10D


MHZ2-16D/MHZL2-16D


MHZ2-20D/MHZL2-20D


External Gripping Force

MHZ2-32D

MHZ2-40D

MHZ MHF

MHL

MHR

MHK

MHS

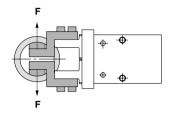
MHC

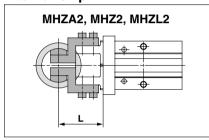
MHT

MHY

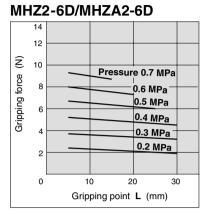
-X□

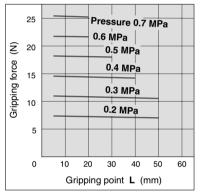
MRHQ

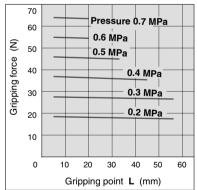

MA

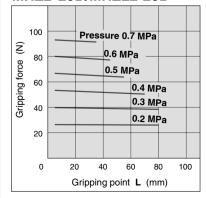

Model Selection

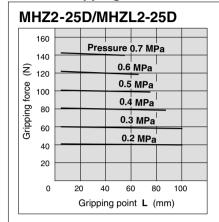
Step 1 Effective Gripping Force: Series MHZ□2/Double Acting/Internal Gripping Force -

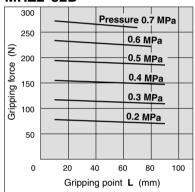

Indication of effective gripping force
 The effective gripping force shown in the graphs
 to the right is expressed as F, which is the thrust
 of one finger, when both fingers and attachments are in full contact with the workpiece as
 shown in the figure below.

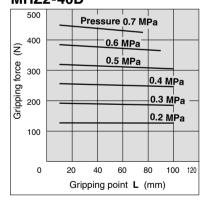

Internal Grip


Internal Gripping Force

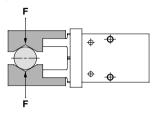

MHZ2-10D/MHZL2-10D


MHZ2-16D/MHZL2-16D

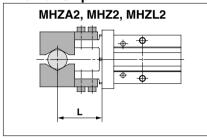

MHZ2-20D/MHZL2-20D


Internal Gripping Force

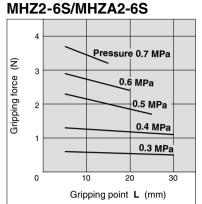
MHZ2-32D

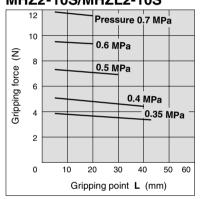


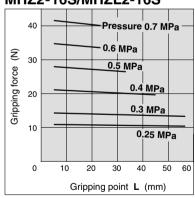
MHZ2-40D

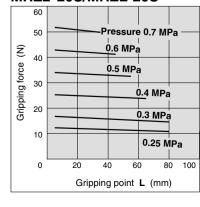


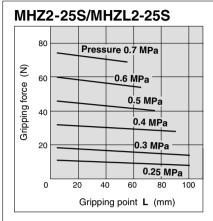
Step 1 Effective Gripping Force: Series MHZ□2/Single Acting/External Gripping Force

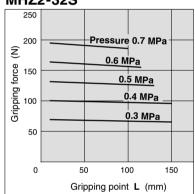

Indication of effective gripping force
 The effective gripping force shown in the graphs
 to the right is expressed as F, which is the thrust
 of one finger, when both fingers and attachments
 are in full contact with the workpiece as shown in
 the figure below.

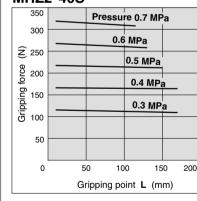

External Grip


External Gripping Force


MHZ2-10S/MHZL2-10S


MHZ2-16S/MHZL2-16S


MHZ2-20S/MHZL-20S


External Gripping Force

MHZ2-32S

MHZ2-40S

MHZ MHF

MHL

MHR

MHK

MHS

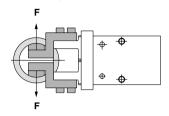
MHC MHT

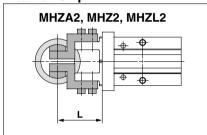
МНҮ

MHW

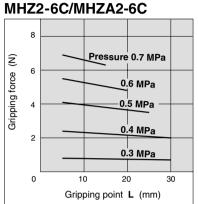
-X□

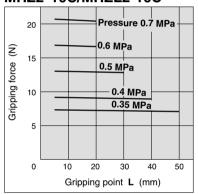
MRHQ

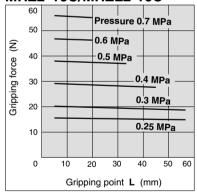

MA

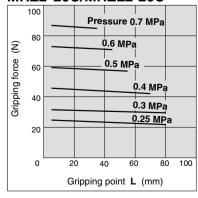

Model Selection

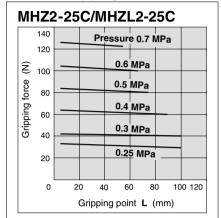
Step 1 Effective Gripping Force: Series MHZ□2/Single Acting/Internal Gripping Force

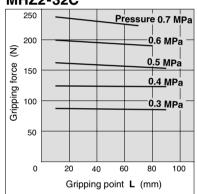

• Indication of effective gripping force
The effective gripping force shown in the graphs
to the right is expressed as F, which is the thrust
of one finger, when both fingers and attachments are in full contact with the workpiece as
shown in the figure below.

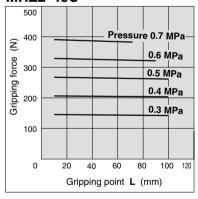

Internal Grip


Internal Gripping Force

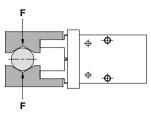

MHZ2-10C/MHZL2-10C


MHZ2-16C/MHZL2-16C

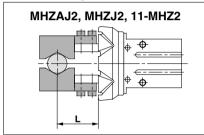

MHZ2-20C/MHZL2-20C


Internal Gripping Force

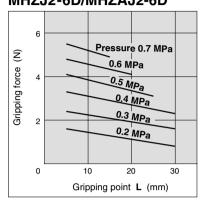
MHZ2-32C

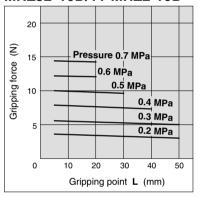


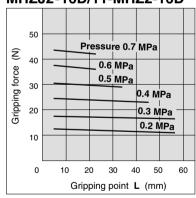
MHZ2-40C

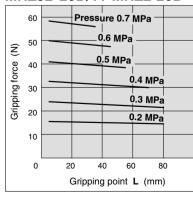


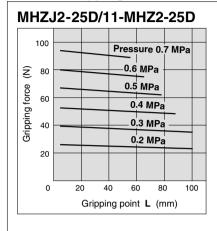
Step 1 Effective Gripping Force: Series MHZ□2/Double Acting/External Gripping Force


Indication of effective gripping force
 The effective gripping force shown in the graphs
 to the right is expressed as F, which is the thrust
 of one finger, when both fingers and attachments are in full contact with the workpiece as
 shown in the figure below.


External Grip


External Gripping Force MHZJ2-6D/MHZAJ2-6D


MHZJ2-10D/11-MHZ2-10D


MHZJ2-16D/11-MHZ2-16D

MHZJ2-20D/11-MHZ2-20D

External Gripping Force

MHZ MHF

MHL

MHR

MHK

MHS

MHC

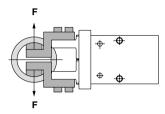
MHT

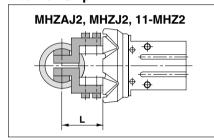
MHY

MHW

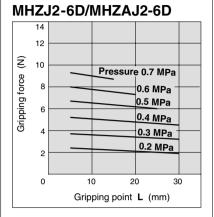
-X□

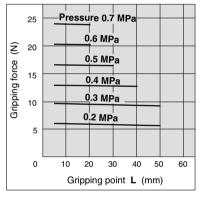
MRHQ

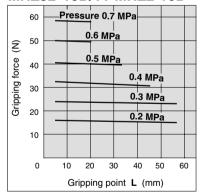

MA

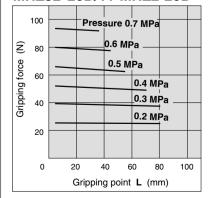

Model Selection

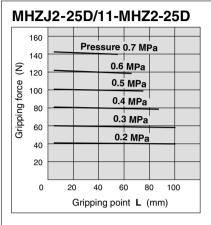
Step 1 Effective Gripping Force: Series MHZ□2/Double Acting/Internal Gripping Force -


Indication of effective gripping force
 The effective gripping force shown in the graphs
 to the right is expressed as F, which is the thrust
 of one finger, when both fingers and attachments are in full contact with the workpiece as
 shown in the figure below.


Internal Grip


Internal Gripping Force


MHZJ2-10D/11-MHZ2-10D


MHZJ2-16D/11-MHZ2-16D

MHZJ2-20D/11-MHZ2-20D

Internal Gripping Force

