Power-switching Compact General-purpose Relays

- Wiring work can be shortened by as much as 60% * compared to conventional screw terminal sockets by combining with push-in plus terminal sockets (PYF- \square PU) that feature light insertion force and strong pullout strength to achieve less wiring work.
- The standard models include models that are compliant with the UL, CSA, and SEV safety standards and with the Electrical Appliances and Material Safety Act.
- Equipped with an arc barrier for arc interruption.
- Withstand voltages up to $2,000 \mathrm{~V}$.
- New built-in diode and built-in CR circuit models have joined the series.
- The lineup also includes models that are compliant with the LR and VDE safety standards.
- When both push-in plus terminals and screw terminal sockets are combined with plug-in terminal types (according to actual OMRON measurements as of November 2015)

제 자 $\triangle C \in$

Refer to the standards certifications and compliance section of your OMRON website for the latest information on certified models.

Refer to the Common Relay Precautions.

Model Number Structure

Classification	Structure		Relays with Plug-in Terminals !		Relays with PCB Terminals §	Case-surface mounting
		mber poles		With operation indicators		
Standard models Compliance with Electrical Appliances and Material Safety Act	1		*LY1	**LY1N	*LY1-0	*LY1F
			*LY2	**LY2N	*LY2-0	*LY2F
	2	Bifurcated	**LY2Z	**LY2ZN	**LY2Z-0	**LY2ZF
	3		---	---	*LY3-0	---
	4		*LY4	**LY4N	*LY4-0	*LY4F
Models with diode for coil surge absorption (DC coil specification only)	1		**LY1-D	**LY1N-D2	---	---
	2		**LY2-D	**LY2N-D2	---	---
		Bifurcated	**LY2Z-D	**LY2ZN-D2	---	---
	4		**LY4-D	**LY4N-D2	---	---
Models with CR circuits for coil surge absorption (AC coil specification only)	1		-	-	-	
	2		**LY2-CR	**LY2N-CR	\square	
		Bifurcated	**LY2Z-CR	**LY2ZN-CR		

Note: 1. Cells with a diagonal line cannot be manufactured. Ask your OMRON representative for details on manufacturing products for cells containing "---" in the above table.
2. If \#187 tab terminals are required, use the LY1F-T2 or LY2F-T2 (single-pole or double-pole models only)
3. Refer to page 20 for information on plug-in terminal and socket combinations.
4. Items with an asterisk (${ }^{*}$) in the table are certified for UL, CSA, and SEV. This is indicated with a certification mark on the products.
5. Items with two asterisks $\left(^{* *}\right)$ in the table are certified for UL and CSA. This is indicated with a certification mark on the products.
6. All models in the table are certified for IEC (TÜV).
7. The models with plug-in terminals (single-pole, double-pole, and 4-pole) were combined with the PTF-E for the EC Declaration of Conformity. These products display the CE Marking.

Refer to List of Certified Models for a list of models that are certified for safety standards and the Electrical Appliances and Material Safety Act.

Classification	1 pole		Double-, 3-, and 4-pole models		Bifurcated contacts	
Item Load	Resistive load	$\begin{gathered} \text { Inductive load } \\ (\cos \varphi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}) \end{gathered}$	Resistive load	$\begin{gathered} \text { Inductive load } \\ (\cos \varphi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}) \end{gathered}$	Resistive load	$\begin{gathered} \text { Inductive load } \\ (\cos \varphi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}) \end{gathered}$
Contact type	Single				Bifurcated	
Contact materials	Ag alloy				Ag	
Rated load	15 A at 110 VAC 15 A at 24 VDC	10 A at 110 VAC 7 A at 24 VDC	10 A at 110 VAC 10 A at 24 VDC	$\begin{aligned} & \text { 7.5 A at } 110 \mathrm{VAC} \\ & 5 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	5 A at 110 VAC 5 A at 24 VDC	4 A at 110 VAC 4 A at 24 VDC
Rated carry current	15 A		10 A		7 A	
Maximum contact voltage	$\begin{aligned} & 250 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$		$\begin{aligned} & 250 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$		$\begin{aligned} & 250 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$	
Maximum contact current	15 A	15 A	10 A	10 A	7 A	7 A

\(\left.$$
\begin{array}{|l|l|l|}\hline & \text { Type } & \begin{array}{l}\text { Single-pole and double-pole models } \\
\text { (standard models and bifurcated contact } \\
\text { models) }\end{array}\end{array}
$$ \begin{array}{l}Single-pole, double-pole models

(models with built-in operation indicators, models

with built-in diodes, and models with built-in CR

circuits),

3-pole and 4-pole models\end{array}\right]\)| -25 to $+40^{\circ} \mathrm{C}$ |
| :--- |
| Ambient operating
 temperature |
| Ambient operating
 humidity |
| (with no icing or condensation)*1 |

Note: 1. Some models in the LY1 and LY2 Series have an upper temperature limit of $+40^{\circ} \mathrm{C}$. This limitation is due to the diode junction temperature and the elaments used
2. Refer to Ambient Temperature vs. Coil Temperature Rise in Engineering Data on page 8 to 9 for information on operation in temperature conditions that are not described here.
3. When you apply a minimum of 10 A of current to an LY1 when it is used in combination with the PTF-08-PU, PTF-08-PU-L, PTF08A, PTF08A-E, or PT08, connect each of the following terminal pairs: (1) to (2), (3) to (4),
*1. If the carry current is 4
It e carry current is 4 A or less, the usable ambient temperature If the flowing current is 4 A or less, the usable ambient temperature range is -25 to $55^{\circ} \mathrm{C}$.

Characteristics

Item Type		Standard models, models with built-in operation indicators, models with built-in CR circuits, and models with built-in diodes	Bifurcated contacts
Contact resistance*1		$50 \mathrm{~m} \Omega$ max.	
Operating time*2		25 ms max.	
Release time*2		25 ms max.	
Maximum operating frequency	Mechanical	18,000 operations/h	
	Rated load	1,800 operations/h	
Insulation resistance*3		$100 \mathrm{M} \Omega \mathrm{min}$.	
Dielectric strength	Between coil and contacts	2,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .	
	Between contacts of different polarity		
	Between contacts of the same polarity	1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .	
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude ($1.0-\mathrm{mm}$ double amplitude)	
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude ($1.0-\mathrm{mm}$ double amplitude)	
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$	
	Malfunction	$200 \mathrm{~m} / \mathrm{s}^{2}$	
Endurance	Mechanical	AC: $50,000,000$ operations min. DC: 100,000,000 operations min.	(switching frequency: 18,000 operations/h)
	Electrical*4	1-, 3-, 4-pole: 200,000 operations min. 2-pole: 500,000 operations min. (rated load, operating frequency: 1,800 operations/h)	2-pole: 500,000 operations min. (rated load, operating frequency: 1,800 operations/h)
Failure rate P valur	ue (reference value)*5	100 mA at 5 VDC	10 mA at 5 VDC
Weight		1-pole and 2-pole: 40 g , 3-pole: Approx	$50 \mathrm{~g}, 4$-pole: Approx. 70 g

Note: The values at the left are initial values.
*1. Measurement conditions: 1 A at 5 VDC using the voltage
*2. Measurement conditions: With rated operating power applied, not including contact bounce.
$* 3$. Measurement conditions: For 500 VDC applied to the same location as for dielectric strength measurement.
*4. Ambient temperature condition: $23^{\circ} \mathrm{C}$
*5. This value was measured at a switching frequency of 120 operations per minute.

Endurance Under Real Loads (Reference Only)

Loadtype	LY1, 100 VAC			LY2, 100 VAC			LY4, 100 VAC		
	Conditions	Operating frequency	$\begin{gathered} \text { Electrical life } \\ (\times 10,000 \\ \text { operations min.) } \end{gathered}$	Conditions	Operating frequency	$\begin{gathered} \text { Electrical life } \\ (\times 10,000 \\ \text { operations min. }) \end{gathered}$	Conditions	Operating frequency	$\begin{gathered} \text { Electrical life } \\ (\times 10,000 \\ \text { operations min. }) \end{gathered}$
AC motor	400 W, 100 VAC singlephase with 35-A inrush current, 7-A current flow	ON for 10 s , OFF for 50 s	5	200 W, 100 VAC singlephase with 25-A inrush current, 5-A current flow	ON for 10 s , OFF for 50 s	20	200 W, 200 VAC threephase with 5-A inrush current, 1-A current flow	ON for 10 s , OFF for 50 s	50
							750 W, 200 VAC threephase with 18-A inrush current, 3.5-A current flow		7
AC lamp	300 W, 100 VAC with 51-A inrush current, 3A current flow	ON for 5 s , OFF for 55 s	10	300 W, 100 VAC with 51-A inrush current, 3A current flow	ON for 5 s , OFF for 55 s	8	300 W, 100 VAC with 51-A inrush current, 3A current flow	ON for 5 s , OFF for 55 s	5
	500 W, 100 VAC with 78-A inrush current, 5A current flow		2.5						
Capacitor (2,000 $\mu \mathrm{F}$)	24 VDC with 50-A inrush current, 1-A current flow	ON for 1 s , OFF for 6 s	10	24 VDC with 50-A inrush current, 1-A current flow	ON for 1 s , OFF for 15 s	1	24 VDC with 50-A inrush current, 1-A current flow	ON for 1 s , OFF for 15 s	0.5
				24 VDC with 20-A inrush current, 1-A current flow		15	24 VDC with 20-A inrush current, 1-A current flow	ON for 1 s , OFF for 2 s	20
AC solenoid	50 VA with 2.5-A inrush current, 0.25-A current flow	ON for 1 s , OFF for 2 s	150	50 VA with 2.5-A inrush current, 0.25-A current flow	ON for 1 s , OFF for 2 s	100	50 VA with 2.5-A inrush current, 0.25-A current flow	ON for 1 s , OFF for 2 s	100
	100 VA with 5-A inrush current, $0.5-\mathrm{A}$ current flow		80	100 VA with 5-A inrush current, $0.5-\mathrm{A}$ current flow		50	100 VA with 5-A inrush current, 0.5-A current flow		50

LY4
LY4N
LY4-D
LY4N-D2

Terminal Arrangement/Internal Connections (Bottom View)

LY4
LY4-D

(The coil has no polarity.)
 and wire all connections correctly.

LY4N-D2

Check the coil polarity when wiring and wire all connections correctly.

Note: 1. For the DC models, check the coil polarity when wiring and wire all connections correctly.
2. The indicator is red for $A C$ and green for $D C$.
3. The operation indicator indicates the energization of the coil and does not represent contact operation.

LY2-CR
LY2Z-CR
LY2N-CR
LY2ZN-CR

*These dimensions are for the LY2N-CR.

Terminal Arrangement/Internal Connections (Bottom View)

LY2(Z)-CR

LY2(Z)N-CR

Relays with PCB Terminals

LY1-0, LY3-0,
LY2-0, and LY4-0

Note: The figures and dimensions depicted here are for the LY2-0. The dimension with an asterisk (${ }^{*}$) is 6.4 for the LY1-0.

Note: 1. The dimensional tolerance is 0.1 mm .
2. There are exposed parts (conductive parts) on the LY1-0 other than the terminals. Be careful when using this Relay on a double-sided PCBs.

Terminal Arrangement/Internal Connections (Bottom View)

