Power-switching Compact General-purpose Relays

- Wiring work can be shortened by as much as 60% * compared to conventional screw terminal sockets by combining with push-in plus terminal sockets (PYF- \square PU) that feature light insertion force and strong pullout strength to achieve less wiring work.
- The standard models include models that are compliant with the UL, CSA, and SEV safety standards and with the Electrical Appliances and Material Safety Act.
- Equipped with an arc barrier for arc interruption.
- Withstand voltages up to $2,000 \mathrm{~V}$.
- New built-in diode and built-in CR circuit models have joined the series.
- The lineup also includes models that are compliant with the LR and VDE safety standards.
- When both push-in plus terminals and screw terminal sockets are combined with plug-in terminal types (according to actual OMRON measurements as of November 2015)

제 자 $\triangle C \in$

Refer to the standards certifications and compliance section of your OMRON website for the latest information on certified models.

Refer to the Common Relay Precautions.

Model Number Structure

Classification	Structure		Relays with Plug-in Terminals !		Relays with PCB Terminals §	Case-surface mounting
		mber poles		With operation indicators		
Standard models Compliance with Electrical Appliances and Material Safety Act	1		*LY1	**LY1N	*LY1-0	*LY1F
			*LY2	**LY2N	*LY2-0	*LY2F
	2	Bifurcated	**LY2Z	**LY2ZN	**LY2Z-0	**LY2ZF
	3		---	---	*LY3-0	---
	4		*LY4	**LY4N	*LY4-0	*LY4F
Models with diode for coil surge absorption (DC coil specification only)	1		**LY1-D	**LY1N-D2	---	---
	2		**LY2-D	**LY2N-D2	---	---
		Bifurcated	**LY2Z-D	**LY2ZN-D2	---	---
	4		**LY4-D	**LY4N-D2	---	---
Models with CR circuits for coil surge absorption (AC coil specification only)	1		-	-	-	
	2		**LY2-CR	**LY2N-CR	\square	
		Bifurcated	**LY2Z-CR	**LY2ZN-CR		

Note: 1. Cells with a diagonal line cannot be manufactured. Ask your OMRON representative for details on manufacturing products for cells containing "---" in the above table.
2. If \#187 tab terminals are required, use the LY1F-T2 or LY2F-T2 (single-pole or double-pole models only)
3. Refer to page 20 for information on plug-in terminal and socket combinations.
4. Items with an asterisk (${ }^{*}$) in the table are certified for UL, CSA, and SEV. This is indicated with a certification mark on the products.
5. Items with two asterisks $\left(^{* *}\right)$ in the table are certified for UL and CSA. This is indicated with a certification mark on the products.
6. All models in the table are certified for IEC (TÜV).
7. The models with plug-in terminals (single-pole, double-pole, and 4-pole) were combined with the PTF-E for the EC Declaration of Conformity. These products display the CE Marking.

Ordering Information

Relays

Models with Plug-in Terminals

Classification	Number of poles	1 pole		2 poles		4 poles	
		Model	Rated voltage (V)	Model	Rated voltage (V)	Model	Rated voltage (V)
Models with single contacts	Standard models	LY1	$\begin{aligned} & 12,24,100 / 110, \\ & 110 / 120, \\ & \text { or 200/220 VAC } \end{aligned}$	LY2	$\begin{aligned} & 12,24,100 / 110,110 / \\ & 120,200 / 220, \\ & \text { or220/240 VAC } \end{aligned}$	LY4	$\begin{aligned} & 12,24,100 / 110, \text { or } \\ & 200 / 220 \text { VAC } \end{aligned}$
			$\begin{aligned} & \hline 12,24,48, \\ & \text { or 100/110 VDC } \end{aligned}$		$\begin{aligned} & \text { 12, 24, 48, } \\ & \text { or } 100 / 110 \text { VDC } \end{aligned}$		$\begin{aligned} & \hline 12,24,48, \\ & \text { or } 100 / 110 \mathrm{VDC} \end{aligned}$
	Models with built-in operation indicators	LY1N	$\begin{aligned} & 12,24,100 / 110, \\ & 110 / 120, \\ & \text { or } 200 / 220 \text { VAC } \end{aligned}$	LY2N	$\begin{aligned} & 12,24,100 / 110,110 / \\ & 120,200 / 220, \\ & \text { or } 220 / 240 \text { VAC } \end{aligned}$	LY4N	$\begin{aligned} & \text { 12, 24, 100/110, or } \\ & 200 / 220 \text { VAC } \end{aligned}$
			$\begin{aligned} & 12,24, \\ & \text { or } 100 / 110 \mathrm{VDC} \end{aligned}$		$\begin{aligned} & 12,24,48, \\ & \text { or } 100 / 110 \mathrm{VDC} \end{aligned}$		$\begin{aligned} & 12,24,48, \\ & \text { or } 100 / 110 \mathrm{VDC} \end{aligned}$
	Models with built-in diodes	LY1-D	$\begin{aligned} & \hline 12,24,48, \\ & \text { or 100/110 VDC } \end{aligned}$	LY2-D	$\begin{aligned} & 12,24,48, \\ & \text { or } 100 / 110 \mathrm{VDC} \end{aligned}$	LY4-D	$\begin{aligned} & 12,24,48, \\ & \text { or } 100 / 110 \mathrm{VDC} \end{aligned}$
	Models with built-in diodes and operation indicators	$\begin{gathered} \text { LY1N- } \\ \text { D2 } \end{gathered}$	12, 24, or 48 VDC	LY2N-D2	$\begin{aligned} & \text { 12, 24, 48, } \\ & \text { or 100/110 VDC } \end{aligned}$	LY4ND2	$\begin{aligned} & 12,24,48, \\ & \text { or 100/110 VDC } \end{aligned}$
	Models with built-in CR circuits	-	-	LY2-CR	$\begin{aligned} & \text { 100/110, } 110 / 120, \\ & 200 / 220, \text { or } 220 / 240 \\ & \text { VAC } \end{aligned}$	---	--
	Models with built-in CR circuits and operation indicators	-	-	LY2N-CR	$\begin{aligned} & \text { 100/110, 110/120, } \\ & \text { 200/220, or } 220 / 240 \\ & \text { VAC } \end{aligned}$	---	--
Bifurcated contacts	Standard models	-	-	LY2Z	$\begin{aligned} & \text { 100/110 or200/220 } \\ & \text { VAC } \end{aligned}$	---	--
		-	-		$\begin{aligned} & 12,24,48 \text {, or } 100 / \\ & 110 \text { VDC } \end{aligned}$	--	--
	Models with built-in operation indicators	-	-	LY2ZN	$\begin{aligned} & \text { 100/110, 110/120, } \\ & \text { 200/220, } \\ & \text { or 220/240 VAC } \end{aligned}$	--	--
		-	-		12 or 24 VDC	--	--
	Models with built-in diodes	-	-	LY2Z-D	12, 24, or 48 VDC	---	--
	Models with built-in diodes and operation indicators	-	-	$\begin{gathered} \text { LY2ZN- } \\ \text { D2 } \end{gathered}$	$\begin{aligned} & \text { 12, } 24 \text {, or } 100 / 110 \\ & \text { VDC } \end{aligned}$	---	---
	Models with built-in CR circuits	-	-	LY2Z-CR	100/110 VAC	---	--
	Models with built-in CR circuits and operation indicators	-	-	$\begin{aligned} & \text { LY2ZN- } \\ & \text { CR } \end{aligned}$	100, 110, 110/1 20, or 200/220 VAC	---	--

Relays with PCB Terminals

Number of poles Classification	1 pole		2 poles		3 poles		4 poles	
	Model	Rated voltage (V)						
Models with single contacts	LY1-0	$\begin{aligned} & \text { 24,100/110, } \\ & 110 / 120, \text { or } 200 / 220 \\ & \text { VAC } \end{aligned}$	LY2-0	12, 24, 100/110, 110/120, 200/ 220, or 220/240 VAC	LY3-0	$\begin{aligned} & 24,100 / 110, \\ & \text { or 200/220 VAC } \end{aligned}$	LY4-0	$\begin{aligned} & \text { 24, 100/110, or 200/ } \\ & 220 \text { VAC } \end{aligned}$
		12 or 24 VDC		$\begin{aligned} & \hline 12,24,48 \\ & \text { or } 100 / 110 \mathrm{VDC} \end{aligned}$		$\begin{aligned} & \text { 12, 24, 48, or } \\ & 100 / 110 \text { VDC } \end{aligned}$		$\begin{aligned} & 12,24,48, \text { or } \\ & 100 / 110 \text { VDC } \end{aligned}$
Bifurcated contacts	---	---	LY2Z-0	100/110 VAC	---	---	---	---
				$\begin{aligned} & 24,48, \text { or } \\ & 100 / 110 \mathrm{VDC} \end{aligned}$				---

Case-surface Mounting

Number of poles Classification	1 pole		2 poles		4 poles	
	Model	Rated voltage (V)	Model	Rated voltage (V)	Model	Rated voltage (V)
Models with single contacts	LY1F	24, 100/110, 110/120, 200/220, or 220/240 VAC	LY2F	$\begin{aligned} & 12,24,100 / 110,110 / \\ & 120,200 / 220, \\ & \text { or 220/240 VAC } \end{aligned}$	LY4F	12, 24, 100/110, or 200/220 VAC
		$\begin{aligned} & 6,12,24 \text {, or } 100 / 110 \\ & \text { VDC } \end{aligned}$		$\begin{aligned} & 12,24,48, \text { or } 100 / 110 \\ & \text { VDC } \end{aligned}$		$\begin{aligned} & 12,24 \text {, or } 100 / 110 \\ & \text { VDC } \end{aligned}$
Bifurcated contacts	---	---	LY2ZF	$\begin{aligned} & 24,100 / 110, \\ & \text { or 200/220 VAC } \end{aligned}$	---	---
				12 or 24 VDC		

Accessories (Order Separately)

Front-mounting Sockets

| Applicable
 relay model | Mounting
 Method | Conductive
 part
 protection | Terminal Type | Applicable crimp
 terminal/
 Electric wire | Hold-down Clips/
 Release Levers
 (Order Separately) |
| :--- | :---: | :---: | :---: | :--- | :--- | :--- | :--- |

[^0]
Back-mounting Sockets

* When ordering PT08, PT11, or PT14 sockets, please note that the minimum order quantity is 10 and orders are accepted in multiples of the minimum order.

Relay Hold-down Clips

Application Item	Used with Socket		Used with Socket mounting plate	For models with built-in CR circuits	
Appearance					
Model	PYC-A1	PYC-P	PYC-S	Y92H-3	PYC-1
Minimum order (quantity)*	100	100	10	10	10

* Orders are accepted in multiples of the minimum order.

Socket Mounting Plates

Applicable sockets	Number of sockets	
PT08 PT08QN	1	PYP-1*1
	18	PYP-18*2
	PT14	36
PT14QN	1	PYP-36*2
	PTP-1	
	10	PTP-10

$* 1$. When ordering PYP-1, please note that the minimum order quantity is 10 and orders are accepted in multiples of the minimum order. *2. PYP-18 and PYP-36 can be cut to any required length.
DIN Track Mounting Parts

Type		Appearance	Model
DIN Tracks	Shallow type, total length: 1 m	\qquad	PFP-100N
	Shallow type, total length: 0.5 m		PFP-50N
	Deep type, total length: 1 m		PFP-100N2
End Plate			PFP-M
Spacer			PFP-S

Ratings and Specifications

Ratings

Standard Models with Built-in Operation Indicators
Operating Coil, Single-pole and Double-pole Models

3 poles

Item Rated voltage (V)		Rated current (mA)		Coil resistance (Ω)	Coil inductance (H)		Must-operate voltage (V)	Must-release voltage (V)	Maximum voltage (V)	\qquad
		50 Hz	60Hz		Armature OFF	Armature ON				
AC	12	159	134	24	0.12	0.21	80\% max.*1	30\% min.*2	110% of rated voltage	$\begin{aligned} & \text { Approx. } 1.6 \\ & \text { to } 2.0 \\ & \text { (at } 60 \mathrm{~Hz} \text {) } \end{aligned}$
	24	80	67	100	0.44	0.79				
	100/110	14.1/16	12.4/13.7	2,300	10.5	18.5				
	200/220	9.0/10.0	7.7/8.5	8,650	34.8	59.5				
DC	12	112		107	0.45	0.98		10\% min.*2		Approx. 1.4
	24	58.6		410	1.89	3.87				
	48	28.2		1,700	8.53	13.9				
	100/110	12.7/13		8,500	29.6	54.3				

4 poles

Item Rated voltage (V)		Rated cur	nt (mA)	Coil resistance (Ω)	Coil ind	ance (H)	Must-operate voltage (V)	Must-release voltage (V)	Maximum voltage (V)	\qquad
		50 Hz	60Hz		Armature OFF	Armature ON				
AC	12	199	170	20	0.1	0.17	80\% max.*1	30\% min.*2	$\begin{aligned} & 110 \% \text { of } \\ & \text { rated } \\ & \text { voltage } \end{aligned}$	Approx. 1.95 to 2.5 (at 60 Hz)
	24	93.6	80	78	0.38	0.67				
	100/110	22.5/25.5	19/21.8	1,800	10.5	17.3				
	200/220	11.5/13.1	9.8/11.2	6,700	33.1	57.9				
DC	12	120		100	0.39	0.84		10\% min.*2		Approx. 1.5
	24	69		350	1.41	2.91				
	48	30		1,600	6.39	13.6				
	100/110	15/15.9		6,900	32.0	63.7				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for the AC rated current and $\pm 15 \%$ for the DC coil resistance.
2. The AC coil resistance and inductance values are reference values only. (at 60 Hz).
3. Operating characteristics were measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. The maximum voltage capacity was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.
*1. There is variation between products, but actual values are 80% max.
To ensure operation, apply at least 80% of the rated value (at a coil temperature of $+23^{\circ} \mathrm{C}$).
*2. The actual values are $30 \% \mathrm{~min}$. for $A C$ and $10 \% \mathrm{~min}$. for DC. To ensure release, use a value that is lower than the specified value.

Refer to List of Certified Models for a list of models that are certified for safety standards and the Electrical Appliances and Material Safety Act.

Classification	1 pole		Double-, 3-, and 4-pole models		Bifurcated contacts	
Item Load	Resistive load	$\begin{gathered} \text { Inductive load } \\ (\cos \varphi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}) \end{gathered}$	Resistive load	$\begin{gathered} \text { Inductive load } \\ (\cos \varphi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}) \end{gathered}$	Resistive load	$\begin{gathered} \text { Inductive load } \\ (\cos \varphi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}) \end{gathered}$
Contact type	Single				Bifurcated	
Contact materials	Ag alloy				Ag	
Rated load	15 A at 110 VAC 15 A at 24 VDC	10 A at 110 VAC 7 A at 24 VDC	10 A at 110 VAC 10 A at 24 VDC	$\begin{aligned} & \text { 7.5 A at } 110 \mathrm{VAC} \\ & 5 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	5 A at 110 VAC 5 A at 24 VDC	4 A at 110 VAC 4 A at 24 VDC
Rated carry current	15 A		10 A		7 A	
Maximum contact voltage	$\begin{aligned} & 250 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$		$\begin{aligned} & 250 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$		$\begin{aligned} & 250 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$	
Maximum contact current	15 A	15 A	10 A	10 A	7 A	7 A

\(\left.$$
\begin{array}{|l|l|l|}\hline & \text { Type } & \begin{array}{l}\text { Single-pole and double-pole models } \\
\text { (standard models and bifurcated contact } \\
\text { models) }\end{array}\end{array}
$$ \begin{array}{l}Single-pole, double-pole models

(models with built-in operation indicators, models

with built-in diodes, and models with built-in CR

circuits),

3-pole and 4-pole models\end{array}\right]\)| -25 to $+40^{\circ} \mathrm{C}$ |
| :--- |
| Ambient operating
 temperature |
| Ambient operating
 humidity |
| (with no icing or condensation)*1 |

Note: 1. Some models in the LY1 and LY2 Series have an upper temperature limit of $+40^{\circ} \mathrm{C}$. This limitation is due to the diode junction temperature and the elaments used
2. Refer to Ambient Temperature vs. Coil Temperature Rise in Engineering Data on page 8 to 9 for information on operation in temperature conditions that are not described here.
3. When you apply a minimum of 10 A of current to an LY1 when it is used in combination with the PTF-08-PU, PTF-08-PU-L, PTF08A, PTF08A-E, or PT08, connect each of the following terminal pairs: (1) to (2), (3) to (4),
*1. If the carry current is 4
It e carry current is 4 A or less, the usable ambient temperature If the flowing current is 4 A or less, the usable ambient temperature range is -25 to $55^{\circ} \mathrm{C}$.

Characteristics

Item Type		Standard models, models with built-in operation indicators, models with built-in CR circuits, and models with built-in diodes	Bifurcated contacts
Contact resistance*1		$50 \mathrm{~m} \Omega$ max.	
Operating time*2		25 ms max.	
Release time*2		25 ms max.	
Maximum operating frequency	Mechanical	18,000 operations/h	
	Rated load	1,800 operations/h	
Insulation resistance*3		$100 \mathrm{M} \Omega \mathrm{min}$.	
Dielectric strength	Between coil and contacts	2,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .	
	Between contacts of different polarity		
	Between contacts of the same polarity	1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .	
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude ($1.0-\mathrm{mm}$ double amplitude)	
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude ($1.0-\mathrm{mm}$ double amplitude)	
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$	
	Malfunction	$200 \mathrm{~m} / \mathrm{s}^{2}$	
Endurance	Mechanical	AC: $50,000,000$ operations min. DC: 100,000,000 operations min.	(switching frequency: 18,000 operations/h)
	Electrical*4	1-, 3-, 4-pole: 200,000 operations min. 2-pole: 500,000 operations min. (rated load, operating frequency: 1,800 operations/h)	2-pole: 500,000 operations min. (rated load, operating frequency: 1,800 operations/h)
Failure rate P valur	ue (reference value)*5	100 mA at 5 VDC	10 mA at 5 VDC
Weight		1-pole and 2-pole: 40 g , 3-pole: Approx	$50 \mathrm{~g}, 4$-pole: Approx. 70 g

Note: The values at the left are initial values.
*1. Measurement conditions: 1 A at 5 VDC using the voltage
*2. Measurement conditions: With rated operating power applied, not including contact bounce.
$* 3$. Measurement conditions: For 500 VDC applied to the same location as for dielectric strength measurement.
*4. Ambient temperature condition: $23^{\circ} \mathrm{C}$
*5. This value was measured at a switching frequency of 120 operations per minute.

Endurance Under Real Loads (Reference Only)

Loadtype	LY1, 100 VAC			LY2, 100 VAC			LY4, 100 VAC		
	Conditions	Operating frequency	$\begin{gathered} \text { Electrical life } \\ (\times 10,000 \\ \text { operations min.) } \end{gathered}$	Conditions	Operating frequency	$\begin{gathered} \text { Electrical life } \\ (\times 10,000 \\ \text { operations min. }) \end{gathered}$	Conditions	Operating frequency	$\begin{gathered} \text { Electrical life } \\ (\times 10,000 \\ \text { operations min. }) \end{gathered}$
AC motor	400 W, 100 VAC singlephase with 35-A inrush current, 7-A current flow	ON for 10 s , OFF for 50 s	5	200 W, 100 VAC singlephase with 25-A inrush current, 5-A current flow	ON for 10 s , OFF for 50 s	20	200 W, 200 VAC threephase with 5-A inrush current, 1-A current flow	ON for 10 s , OFF for 50 s	50
							750 W, 200 VAC threephase with 18-A inrush current, 3.5-A current flow		7
AC lamp	300 W, 100 VAC with 51-A inrush current, 3A current flow	ON for 5 s , OFF for 55 s	10	300 W, 100 VAC with 51-A inrush current, 3A current flow	ON for 5 s , OFF for 55 s	8	300 W, 100 VAC with 51-A inrush current, 3A current flow	ON for 5 s , OFF for 55 s	5
	500 W, 100 VAC with 78-A inrush current, 5A current flow		2.5						
Capacitor (2,000 $\mu \mathrm{F}$)	24 VDC with 50-A inrush current, 1-A current flow	ON for 1 s , OFF for 6 s	10	24 VDC with 50-A inrush current, 1-A current flow	ON for 1 s , OFF for 15 s	1	24 VDC with 50-A inrush current, 1-A current flow	ON for 1 s , OFF for 15 s	0.5
				24 VDC with 20-A inrush current, 1-A current flow		15	24 VDC with 20-A inrush current, 1-A current flow	ON for 1 s , OFF for 2 s	20
AC solenoid	50 VA with 2.5-A inrush current, 0.25-A current flow	ON for 1 s , OFF for 2 s	150	50 VA with 2.5-A inrush current, 0.25-A current flow	ON for 1 s , OFF for 2 s	100	50 VA with 2.5-A inrush current, 0.25-A current flow	ON for 1 s , OFF for 2 s	100
	100 VA with 5-A inrush current, $0.5-\mathrm{A}$ current flow		80	100 VA with 5-A inrush current, $0.5-\mathrm{A}$ current flow		50	100 VA with 5-A inrush current, 0.5-A current flow		50

Details on Safety-standard-certified

Models, LY \square

- Standard models are certified for the UL, CSA, and SEV safety standards.
- Refer to Model Number Structure on page 1 for a list of applicable models.
- The rated values for safety standard certification are not the same as individually defined performance values. Always check the specifications before use.
UL-certified Models (File No. E41643) YJ

Model	Coil ratings	Number of poles	Contact ratings	Certified number of operations
LY	6 to 240 VAC 6 to 125VDC	1	15A, 120VAC (General use)	100,000 operations
			15A, 240VAC (General use)	6,000 operations
			15A, 30VDC (Resistive)	
			1/2HP, 120VAC	100,000 operations
			8.5FLA, 30LRA, 120VAC	
			TV-5, 120VAC	25,000 operations
			470VA, Pilot duty, 120VAC	6,000 operations
	6 to 240VAC 6 to 125 VDC	2	15A, 120VAC (General use)	100,000 operations
			12A, 240VAC (General use)	6,000 operations
			7A, 250VAC (General use)	
			15A, 30VDC (Resistive)	
			5A, 38VDC (Resistive)	
			1/2HP, 120VAC	100,000 operations
			1/3HP, 24VVAC	1,000 operations
			8.5FLA, 30LRA, 120VAC	100,000 operations
			5FLA, 50LRA, 50VDC	
			TV-3, 120VAC	25,000 operations
			345VA, Piot duty, 120-240VAC	6,000 operations
			B300/R300	
	6 to 240VAC 6 to 125VDC	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	10A, 240VAC (General use) (Same polarity)	6,000 operations
			10A, 30VDC (General use) (Same polarity)	
			2A, 40VDC (Resistive) (Same polarity)	
			1/2HP, 240VAC	1,000 operations
			0.6A, 100VDC (Resistive) (Same polarity)	6,000 operations

CSA-certified Models (File No. LR31928)

Model	Coil ratings	Number of poles	Contact ratings	Certified number of operations
LY	6 to 240VAC 6 to 125VDC	1	15A, 120VAC (General use)	100,000 operations
			15A, 240VAC (General use)	6,000 operations
			15A, 30VDC (Resistive)	
			1/2HP, 120VAC	100,000 operations
			8.5FLA, 30LRA, 120VAC	
			TV-5, 120VAC	25,000 operations
			470VA, Pilot duty, 120VAC	6,000 operations
	6 to 240VAC 6 to 125VDC	2	15A, 120VAC (General use)	6,000 operations
			12A, 240VAC (General use)	
			7A, 250VAC (General use)	
			15A, 30VDC (Resisitive)	
			5A, 38VDC (Resistive)	
			1/2HP, 120VAC	100,000 operations
			1/3HP, 240VAC	1,000 operations
			8.5FLA, 30LRA, 120VAC	100,000 operations
			5FLA, 50LRA, 50VDC	
			TV-3, 120VAC	25,000 operations
			345VA, Piot duty, 120-240VAC	6,000 operations
			B300/R300 Pilot duty	
	6 to 240 VAC 6 to 125VDC	34	10A, 240VAC (General use) (Same polarity)	6,000 operations
			10A, 30VDC (Resistive) (Same polarity)	
			1/8HP, 240VAC (Same polarity)	1,000 operations
			1/2HP, 240VAC (Same polarity)	
			1/3HP, 240VAC (Same polarity)	
			2A, 40VDC (Resistive)	6,000 operations
			0.6A, 100VDC (Resistive)	

TÜV-certified Models (File No. R50030064, EN 61810-1) \triangle

Model	Coil ratings	Number of poles	Contact ratings	Certified number of operations
LYロ	6 to 240 VAC 6 to 110 VDC	1	$15 \mathrm{~A}, 110 \mathrm{VDC}$ resistive load	$\begin{aligned} & \text { 200,000 } \\ & \text { operations } \end{aligned}$
			$10 \mathrm{~A}, 110 \mathrm{VAC}$ inductive load	
			$10 \mathrm{~A}, 250 \mathrm{VAC}$ resistive load	
			7A, 250 VAC inductive load	
			$10 \mathrm{~A}, 30 \mathrm{VDC}$ resistive load	
			$7 \mathrm{~A}, 30 \mathrm{VDC}$ inductive load	
		2	$10 \mathrm{~A}, 110 \mathrm{VAC}$ resistive load	
			7.5A, 110 VAC inductive load	
			7A, 250 VAC resistive load	
			$4 \mathrm{~A}, 250 \mathrm{VAC}$ inductive load	
			$7 \mathrm{~A}, 30 \mathrm{VDC}$ resistive load	
			$4 \mathrm{~A}, 30 \mathrm{VDC}$ inductive load	
		34	$10 \mathrm{~A}, 110 \mathrm{VAC}$ resistive load	$\begin{aligned} & \text { 100,000 } \\ & \text { operations } \end{aligned}$
			7.5A, 110 VAC inductive load	

- When ordering a model that is certified for VDE or Lloyd's Register (LR) standards, always specify "VDE-certified Model" or "LR Standard-certified Model" with your order.

VDE Certification (Certificate No. 6359, EN 61810-1)

Model	Coil ratings	Number of poles	Contact ratings	Certified number of operations
LYC-VD	$6,12,24,50$, 110, or 220 VAC $6,12,24,48$, or 110 VDC	1	10 A, 220 VAC resistive load	$\begin{gathered} 200,000 \\ \text { operations } \end{gathered}$
			$7 \mathrm{~A}, 220$ VAC inductive load	
			10 A, 28 VDC resistive load	
			$7 \mathrm{~A}, 28 \mathrm{VDC}$ inductive load	
		2	$7 \mathrm{~A}, 220$ VAC resistive load	
			$4 \mathrm{~A}, 220$ VAC inductive load	
			$7 \mathrm{~A}, 28 \mathrm{VDC}$ resistive load	
			$4 \mathrm{~A}, 28 \mathrm{VDC}$ inductive load	

LR-certified Models (File No. 00/10047)

Model	Coil ratings	Number of poles	Contact ratings
LY \square	6 to 240 VAC 6 to 110 VDC	2	$7.5 \mathrm{~A}, 230$ VAC inductive load
		4	$5 \mathrm{~A}, 24$ VDC inductive load

Details on Safety-standard-certified Models, Sockets
UL-certified Models (File No. E87929) Y】

Model	Ratings	Listed/Recognized
PTF-08-PU	10A 250V	Recognized
PTF-14-PU	10A 250V (Same polarity)	
PTFZ-08-E	15A 250 V (at 50 deg) 12A 250 V (at 70 deg)	
PTFZ-14-E		
$\begin{aligned} & \text { PTF08A(-E) } \\ & \text { PT08 } \end{aligned}$	15A 250V	
PTF11A PTF14A(-E) PT11 PT14	10A 250V	

CSA-certified Models (File No. LR31928)

Model	Ratings	Class number	
PTF-08-PU	10A 250V		
PTF-14-PU	10A 250V (Same polarity)		
PTFZ-08-E	15A 250V (at 50 deg)	321107	
PTFZ-14-E	12A 250V (at 70 deg)		
PTF08A(-E)	15A 240V AC		
PTF11A PTF14A(-E)	10A 240V AC		

CE Marking Compliance

Model	EMC Directive	Low Voltage Directive	Machinery Directive	Safety Category
PTFZ-08-E	Not applicable	O	Not applicable	1
PTFZ-14-E				
PTF08A(-E)				
PTF14A(-E)				

Note: 1. CE compliance is achieved when used with a relay (LY).
2. The Safety Category refers to the maximum applicable category selected when constructing control system safety components. The category does not apply to

TÜV Rheinland certification

Model	Ratings	Standard number	Certification number
PTF-08-PU	$10 \mathrm{~A} 250 \mathrm{~V} * 1$	EN 61984	R50327595
PTF-14-PU	$10 \mathrm{~A} 250 \mathrm{~V} * 2$		
PTFZ-08-E	15A 250V (at 50 deg) 12A 250V (at 70 deg)		R50438680
PTFZ-14-E			

*1. Ratings are for an ambient temperature of $55^{\circ} \mathrm{C}$. At an ambient temperature of $70^{\circ} \mathrm{C}$, the value is 7A.
*2. Ratings are for an ambient temperature of $40^{\circ} \mathrm{C}$. At an ambient temperature of $70^{\circ} \mathrm{C}$, the value is 7 A .

Compliance with Electrical Appliances and Material Safety Act, LY \square

All standard models comply with the Electrical Appliances and Material Safety Act.

Model	Coil ratings	Number of poles	Contact ratings
LY \square		1	15 A at 200 VAC
		2	
		3	10 A at 200 VAC
		4	

LY4
LY4N
LY4-D
LY4N-D2

Terminal Arrangement/Internal Connections (Bottom View)

LY4
LY4-D

(The coil has no polarity.)
 and wire all connections correctly.

LY4N-D2

Check the coil polarity when wiring and wire all connections correctly.

Note: 1. For the DC models, check the coil polarity when wiring and wire all connections correctly.
2. The indicator is red for $A C$ and green for $D C$.
3. The operation indicator indicates the energization of the coil and does not represent contact operation.

LY2-CR
LY2Z-CR
LY2N-CR
LY2ZN-CR

*These dimensions are for the LY2N-CR.

Terminal Arrangement/Internal Connections (Bottom View)

LY2(Z)-CR

LY2(Z)N-CR

Relays with PCB Terminals

LY1-0, LY3-0,
LY2-0, and LY4-0

Note: The figures and dimensions depicted here are for the LY2-0. The dimension with an asterisk (${ }^{*}$) is 6.4 for the LY1-0.

Note: 1. The dimensional tolerance is 0.1 mm .
2. There are exposed parts (conductive parts) on the LY1-0 other than the terminals. Be careful when using this Relay on a double-sided PCBs.

Terminal Arrangement/Internal Connections (Bottom View)

[^0]: * The PYFZ \square A-E and PTF \square A-E Relays have finger protection. Round terminals cannot be used. Use forked terminals.

