

Current/Voltage Trip Value
 KFD2-GS-1.2W

- 1-channel signal conditioner
- 24 V DC supply (Power Rail)
- Current and voltage input
- 2 relay contact outputs
- Programmable high/low alarm
- Configurable via DIP switches and potentiometer
- Terminal blocks with test sockets

Function

This signal conditioner provides the galvanic isolation beetween field circuits and control circuits.
The device is a trip amplifier with two trip points. Trip points, hysteresis and mode of operation can be set independently for both relay outputs. $0 / 4 \mathrm{~mA} \ldots 20 \mathrm{~mA}-, 0 / 1 \mathrm{~V} \ldots 5 \mathrm{~V}$ - or $0 / 2 \mathrm{~V} \ldots 10 \mathrm{~V}$ signals can be connected at the input.
The device actuates the relay output when it reaches the adjusted trip points.
The device is easily configured by the use of DIP switches and potentiometers.

Connection

Technical Data

General specifications

Signal type Analog input

Supply

Connection		Power Rail or terminals 14+, 15-
Rated voltage	U_{r}	$20 . . .30 \mathrm{~V}$ DC
Rated current	I_{r}	$<50 \mathrm{~mA}$
Power consumption		<1.5 W
Input		
Connection side		field side
Measurement range		terminals $1+, 3$-: voltage $0 / 1 \ldots 5 \mathrm{~V}$, load $\geq 50 \mathrm{k} \Omega$ or voltage $0 / 2 \ldots 10 \mathrm{~V}$, load $\geq 100 \mathrm{k} \Omega$ terminals $2+, 3$-: current $0 / 4 \ldots 20 \mathrm{~mA}$; load $\leq 50 \Omega$

Technical Data

Output

Connection side	control side
Output I, II	terminals 7, 8, 9; 10, 11, 12
\quad Contact loading	$250 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{4} \mathrm{A} \mathrm{/} \cos \phi>0.7 ; 40 \mathrm{~V} \mathrm{DC} \mathrm{/} 2$ A resistive load
Output III	device configuration : terminals $4,5,6$
Transfer characteristics	
Deviation	$\leq 1 \%$
\quad Influence of ambient temperature	$0.01 \% / \mathrm{K}$ of adjusted trip value
Input delay	200 ms

Galvanic isolation
Input/power supply
Input/output I, II
Output I, II/power supply
Indicators/settings
\(\left.$$
\begin{array}{ll}\text { Display elements } & \begin{array}{l}\text { LEDs } \\
\text { DIP-switch } \\
\text { potentiometer } \\
\text { Control elements }\end{array}
$$

via DIP switches

via potentiometer

space for labeling at the front\end{array}\right]\)| Labeling | EN 61326-1:2013 (industrial locations) |
| :--- | :--- |
| Directive conformity | EN 61010-1:2010 |
| Electromagnetic compatibility | |
| Directive 2014/30/EU | IEC 60529 |
| Low voltage | EN 61010-1:2010 |
| Conformity $2014 / 35 / E U$ | |

Ambient conditions
Ambient temperature
Mechanical specifications
Degree of protection IP20

Connection
Mass
Dimensions
Mounting

General information

reinforced insulation according to IEC/EN 61010-1, rated insulation voltage $300 \mathrm{~V}_{\text {eff }}$ reinforced insulation according to IEC/EN 61010-1, rated insulation voltage $300 \mathrm{~V}_{\text {eff }}$ reinforced insulation according to IEC/EN 61010-1, rated insulation voltage $300 \mathrm{~V}_{\text {eff }}$

LEDs
witch
via DIP switches
via potentiometer
space for labeling at the front

EN 61010-1:2010
$-20 \ldots 60^{\circ} \mathrm{C}\left(-4 \ldots 140^{\circ} \mathrm{F}\right)$

IP20
screw terminals
approx. 120 g
$20 \times 124 \times 115 \mathrm{~mm}(0.8 \times 4.9 \times 4.5$ inch $)$, housing type B2
on 35 mm DIN mounting rail acc. to EN 60715:2001

Statement of Conformity, Declaration of Conformity, Attestation of Conformity and instructions have to be observed where applicable. For information see www.pepperlfuchs.com.

Assembly

Matching system components

KFD2-EB2	Power Feed Module
UPR-03	Universal Power Rail with end caps and cover, 3 conductors, length: 2 m
K-DUCT-GY	Universal Power Rail with end caps and cover, 3 conductors, length: 0.8 m
K-DUCT-GY-UPR-03	Profile rail with UPR-03-* insert, 3 conductors, wiring comb field side gray

Accessories

KF-ST-5GN

Additional Information

Function

Internal signal voltage

The device converts the input signals at terminals 1,2 , and 3 into a proportional internal voltage $\mathrm{U}_{\text {int }}$ between 0 V and 10 V . This conversion allows reaction-free verification of the input signal. The voltage is output at terminals $4+$ and $3-$.

Trip points

The potentiometers T1 and T2 convert the set trip points into a proportional switching voltage $\mathrm{U}_{\text {pot }}$ between 0 V and 10 V . The voltage range corresponds to a range of 0% to 100%. This voltage can be measured at terminals 3,5 , and 6 .

- Relay output I: Terminals 5+, 3-
- Relay output II: Terminals 6+, 3-

The trip point, hysteresis, mode of operation and type of alarm (high or low alarm) can be selected for each relay.
High alarm means that the switching state of the relay changes when the set trip point is exceeded. This state comes to an end if the value falls below a lower limit. The difference between these two values corresponds to the hysteresis, which can be set on the front panel. With a low alarm, the alarm signal is output at values below the trip point.

Configuration

DIP switch function

Set the DIP switch according to the required function.

Switch	Position	Function
S6	I	Trip point I addresses both relay
	II	Relay I independent of relay II
S5	I	Relay II energized in case of alarm
	II	Relay II de-energized in case of alarm
S4	I	Relay I energized in case of alarm
	II	Relay I de-energized in case of alarm
S3	I	High alarm relay II
	II	Low alarm relay II
S2	I	High alarm relay I
	II	Low alarm relay I
S1	I	Input ranges $0 / 1 \mathrm{~V}$ to 5 V or 0/4 mA to 20 mA
	II	Input ranges $0 / 2 \mathrm{~V}$ to 10 V or $0 / 4 \mathrm{~mA}$ to 20 mA

Setting the trip points with no input signal

The trip points can be set using the potentiometers T 1 and T 2 and the proportional switching voltage $\mathrm{U}_{\text {pot }}$ at terminals $5+$, 3(relay I) and terminals 6+, 3 - (relay II). This is done using a voltage meter (measuring range 10 V). There must be no input signal at this point. Select the trip points in the unit of the input signal or in \%.

Input signal in mA, trip point TP in mA

$\mathrm{I}_{\mathrm{S}}=$	Starting point
$\mathrm{TP}=$	Trip point
$\mathrm{I}_{\mathrm{e}}=$	End point
$\mathrm{U}_{\text {pot }}=$	Proportional switching voltage

The proportional switching voltage $\mathrm{U}_{\text {pot }}$ is calculated using the following formula:
$\mathrm{U}_{\text {pot }}=10 \mathrm{Vx}\left(\mathrm{TP}-\mathrm{I}_{\mathrm{s}}\right) /\left(\mathrm{I}_{\mathrm{e}}-\mathrm{I}_{\mathrm{s}}\right)$

Example:

Trip point TP: 13 mA
$\mathrm{I}_{\mathrm{s}}: \quad 4 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{e}}: \quad 20 \mathrm{~mA}$
$\mathrm{U}_{\text {pot }}=10 \mathrm{~V} x(13 \mathrm{~mA}-4 \mathrm{~mA}) /(20 \mathrm{~mA}-4 \mathrm{~mA})=5.6 \mathrm{~V}$

Input signal in mA, trip point TP in \%

The proportional switching voltage $\mathrm{U}_{\text {pot }}$ is calculated using the following formula:
$U_{\text {pot }}=1 \mathrm{~V} / 2 \mathrm{~mA} \times\left(\mathrm{TP} / 100 \times\left(\mathrm{I}_{\mathrm{e}}-\mathrm{I}_{\mathrm{s}}\right)+\mathrm{I}_{\mathrm{S}}\right)$

Example:

Trip point TP: 75%
$\mathrm{I}_{\mathrm{s}}: \quad 4 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{e}}: \quad 20 \mathrm{~mA}$
$\mathrm{U}_{\text {pot }}=1 \mathrm{~V} / 2 \mathrm{~mA} \times(75 \% / 100 \% \times(20 \mathrm{~mA}-4 \mathrm{~mA})+4 \mathrm{~mA})=8 \mathrm{~V}$

$\mathrm{U}_{\mathrm{s}}=$	Starting point
$\mathrm{TP}=$	Trip point
$\mathrm{U}_{\mathrm{e}}=$	End point
$\mathrm{U}_{\text {pot }}=$	Proportional switching voltage

The proportional switching voltage $\mathrm{U}_{\text {pot }}$ is calculated using the following formula:
$\mathrm{U}_{\text {pot }}=10 \mathrm{~V} \times\left(\mathrm{TP}-\mathrm{U}_{\mathrm{s}}\right) /\left(\mathrm{U}_{\mathrm{e}}-\mathrm{U}_{\mathrm{s}}\right)$

Example:

Trip point TP: 7 V
$\mathrm{U}_{\mathrm{S}}: \quad 2 \mathrm{~V}$
$\mathrm{U}_{\mathrm{e}}: \quad 10 \mathrm{~V}$
$\mathrm{U}_{\text {pot }}=10 \mathrm{~V} \times(7 \mathrm{~V}-2 \mathrm{~V}) /(10 \mathrm{~V}-2 \mathrm{~V})=6.25 \mathrm{~V}$

Input signal in V, trip point TP in \%

The proportional switching voltage $\mathrm{U}_{\text {pot }}$ is calculated using the following formula:
$\mathrm{U}_{\text {pot }}=\mathrm{TP} / 100 \times\left(\mathrm{U}_{\mathrm{e}}-\mathrm{U}_{\mathrm{s}}\right)+\mathrm{U}_{\mathrm{s}}$

Example:

Trip point TP: 45%
$\mathrm{U}_{\mathrm{s}}: \quad 2 \mathrm{~V}$
$\mathrm{U}_{\mathrm{e}}: \quad 10 \mathrm{~V}$
$U_{\text {pot }}=45 \% / 100 \% \times(10 \mathrm{~V}-2 \mathrm{~V})+2 \mathrm{~V}=5.6 \mathrm{~V}$

Setting the trip points with an input signal

The trip points can be adjusted to the input signal using potentiometers T 1 and T 2 . No measuring device is required.

For low alarm:

1. Turn the potentiometer counterclockwise as far as it will go to the left (15 turns).
2. Turn the potentiometer clockwise until the output is tripped. Each turn changes the trip point by about 7%.
3. Set the hysteresis. This does not change the trip point.

For high alarm:

1. Turn the potentiometer clockwise as far as it will go to the right (15 turns)
2. Turn the potentiometer counterclockwise until the output is tripped. Each turn changes the trip point by around 7%.
3. Set the hysteresis. This does not change the trip point.
