DATA SHEET

Variable Area

MT3809G General Purpose Housing

MT3809G Series

Metal Tube Variable Area Flow Meters

Brooks[®] MT3809 meter operation is based on the variable area principle. The all metal meter is ideal for a variety of gas, liquid and steam applications. These meters are indispensable where high pressure and/or high temperature operating conditions exist.

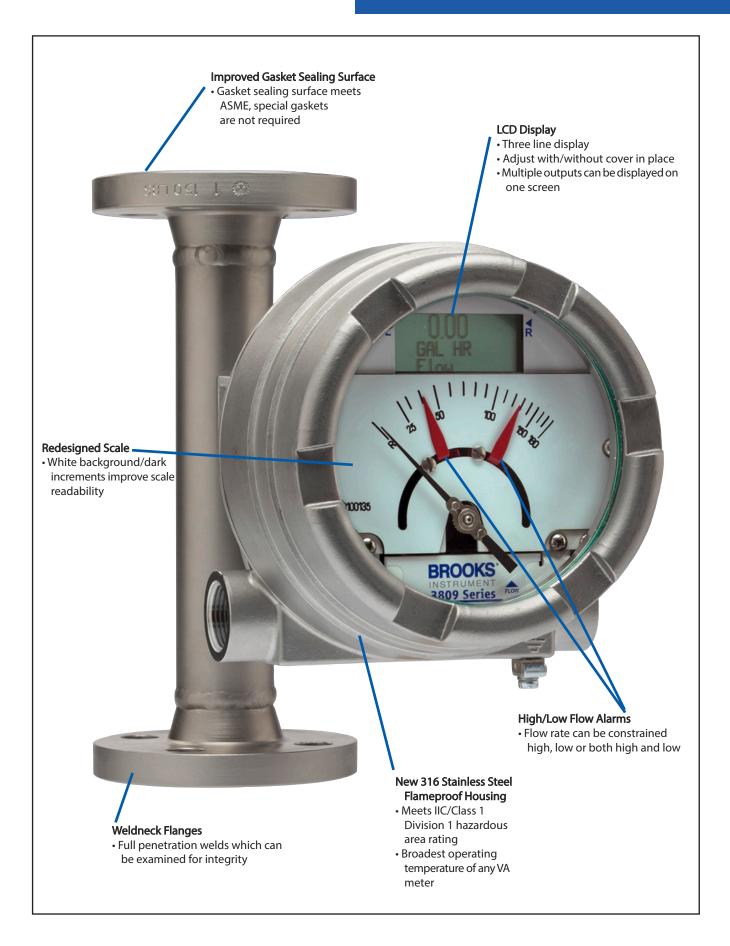
The primary meter is available in 316/316L stainless steel as well as with an ETFE liner. But a wide range of corrosion resistant materials of construction are available which makes it a perfect fit for metering of aggressive applications.

A broad range of connection sizes and types such as ASME, DIN and JIS flange choices along with several threaded options provide for flexible installations.

The very popular mechanical indicator option does not require power which reduces installation costs and is a cost-effective solution for flow measurement in hazardous areas. Optional accessories available includes transmitter with 4-20 mA analog output with HART[®] communications or FOUNDATION[™] Fieldbus communications with or without configurable alarms and pulse output for totalization. Also available are front adjustable inductive alarms, high temperature or stainless steel indicator housings, valves, flow controllers and certifications.

Product Description

The Brooks Model MT3809 has been the "go to" meter for several years and the choice of Engineering & Procurement Contractors (EPC) and major industrial customers. Brooks is proud to raise the performance of the standard meter by adding these new features and options:


- Transmitter with 4-20mA/HART-7, or transmitter with FOUNDATION[™] Fieldbus Communications
- Local Operator Interface with LCD display without removing the cover which means changes can be made even in hazardous areas
- · 316SS flameproof housing that meets IIC/Class 1 Div 1 to handle the toughest hazardous applications
- The broadest range of operating temperatures in the industry, the perfect meter for difficult applications
- · Lower flow rates with the current lay lengths which means one meter style can be used for very low to high flow rates
- The new meter is designed to ASME B31.3 and the gasket sealing surface is per ASME, a rugged design that does not require special gaskets at installation
- Weldneck flanges are standard for MT3809 and MT3810 which means full penetration welds that can easily be tested for integrity
- · Mechanical and alarm design that meets SIL 2 requirements

View MT3809G Series Product Page

BrooksInstrument.com

Beyond Measure

316 SS Flameproof Housing

The 3809 flameproof housing has been redesigned and improved. The option is made of 316 stainless steel. This includes housing, cover, bracket and hardware. The new option now meets ATEX gas group IIC/NA class 1 Division 1. This is the highest gas protection rating available. Now this option can be used in more hazardous area applications. This option also has the broadest operating temperature range of any Variable Area meter. The new 3809 can be used in applications from -198°C to +420°C (-325°F to +788°F).

LCD Display

The 4-20 mA output transmitter is still available with remote analog output but now a LCD display is a new option. The LCD display supplies additional information locally such as totalization, alarm signals and the ability to make parameter changes. The changes can be made by removing the housing cover which is possible in a non-hazardous area. But in a hazardous area the display can be accessed with the cover in place using a supplied magnet.

Improved HART Transmitter, FOUNDATION™ Fieldbus and Alarm Option

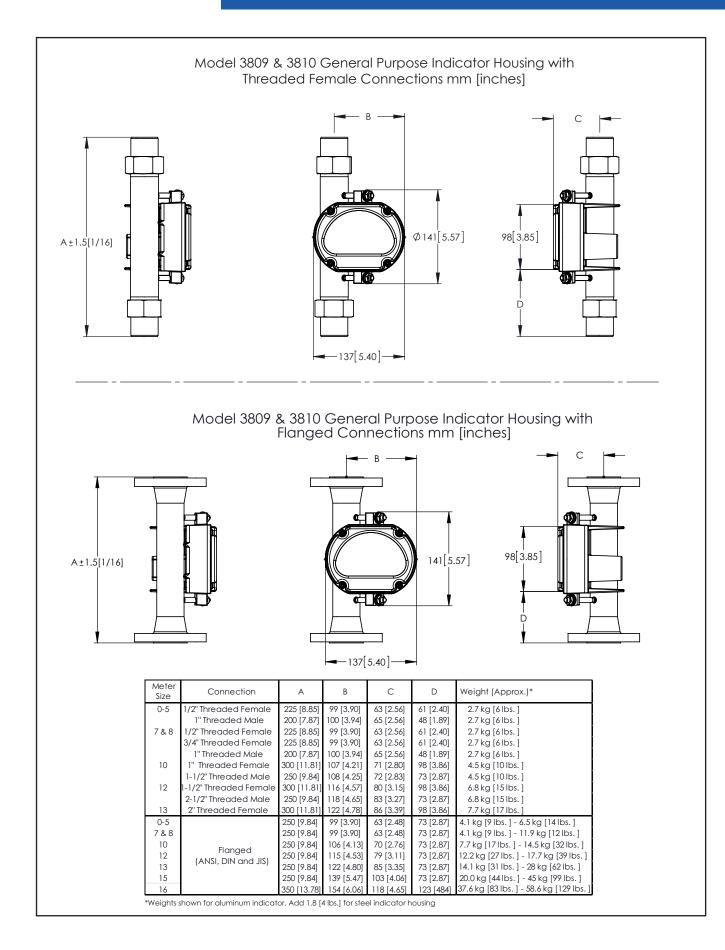
The transmitter and alarm options can be used in applications from -198°C to +420°C (-325°F to +788°F). Every transmitter has HART Revision 7 capability. The transmitter and alarm options will have worldwide approvals including CSA (North America), ATEX (Europe), KOSHA (Korea), NEPSI (China) and TR CU (Custom Union including Russia). The alarm function has a safety certification of SIL 2. This option can be used in the toughest applications including safety systems.

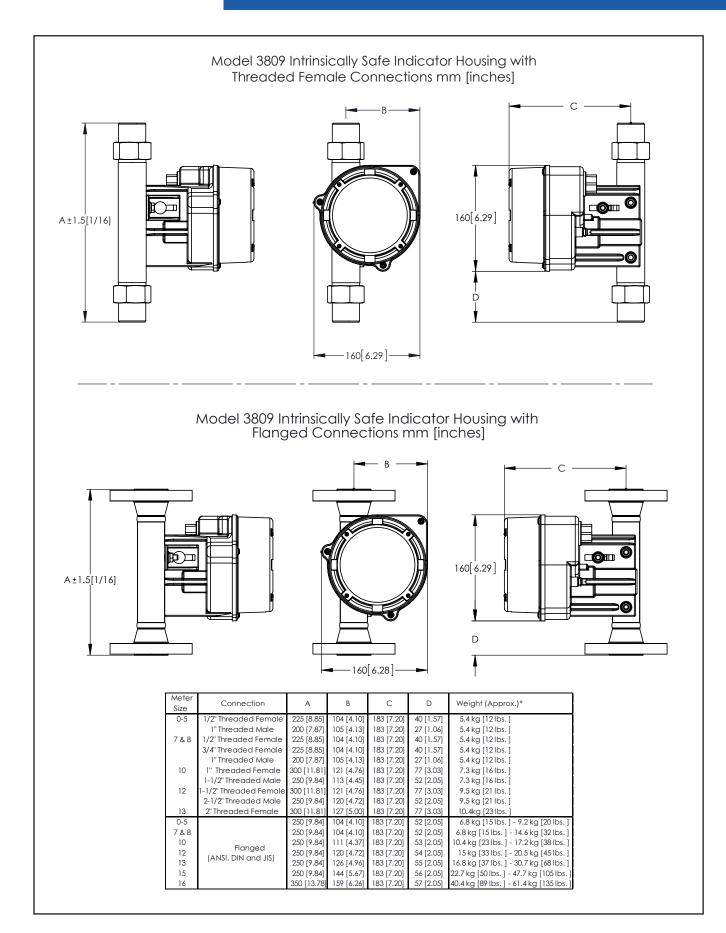
		MT3809	MT3809 ELF	MT3810	TFE Lined			
Measuring Range			See Capa	acity Tables				
Rangeability			10:1 (n	nost sizes)				
Metering Tube	Standard Premium	316/ Alloy 625, Hastelloy® C, Titanium Gr. II	'316L (dual certified stainless steel) Monel® K-500, Hastelloy C	-	Tefzel® Lined 316/316L (dual certified stainless steel)			
Flanges and End Fittings	Standard Premium	316/316L (dual certified : Alloy 625, Hastelloy C, T	stainless steel)	316/316L (dual certified stainless steel) -	Tefzel Lined 316/316L (dual certified stainless steel)			
Accuracy	•	2%, 1%, VDI/VDE class 2.5, 1.6	5%, 3%, VDI/VDE class 4, 2.5	5%, VDI/VDE class 6	2%, VDI/VDE class 2.5			
Repeatability		0.25% Full Scale	1% Full Scale	0.25% Full Scale	0.25% Full Scale			
Scale type / ma	iterial		Dark increments with wh	ite background / Aluminum				
Installation orie	entation and location	Vertical (within 5% of true-v	vertical), bottom inlet, top outlet. Do	not locate in proximity of other magnet	ic interfering components.			
Connections	Flanged: Equivalent - to ANSI B16.5* - to DIN 2527/2635	ANSI 1/2" to 4" 150# RF to 600# RF	Weldneck flanges ANSI 1/2" to 1" 150# RF to 600# RF DIN	ANSI 1/2" to 2" 150# RF to 300# RF PN 40	Slip on flanges ANSI 1/2" to 2" 150# RF to 300# RF			
	- Flange finish			6.3 Ra				
	Threaded female Threaded male	1/2" to 2"NPT/Rc-Female 1" to 2-1/2" NPT-Male	1/2" NPT/Rc-Female 1" NPT-Male	1/2" to 2" NPT-Female -	-			
O-ring material	Flanged	None	None					
	Threaded male	None		-	-			
	Threaded female std Threaded female high pressure 2500lbs	Viton® or Teflon® Viton Shore 90 + Teflon back-up ring or Kalrez 3018 Shore 90 + Teflon back-up ring	. Kalrez [®] 4079	Viton or Teflon	-			
Floats	Standard		316L stainless steel		Hastelloy C-276 (sizes 7,8) PVDF (sizes 10-13)			
	Premium	Alloy 625, Hastelloy C, Titanium Gr. II	Monel K-500, Hastelloy C	-	-			
Protection	Indicator only			NEMA 4X				
Category	Transmitter ALU Transmitter SS			P64 NEMA 4X				
Indicator	Indicator only ALU		Die cast Aluminum (Alloy 3	80), epoxy paint, glass window				
Housing & Cover material	Transm/Alarm/HiTemp ALU Indicator only SS		Cast 316 stainless	80), epoxy paint, glass window s steel, glass window				
	Transm/Alarm/HiTemp SS			nless steel hardware, glass window				
Pressure/Temp	erature		See Pressure/Te	emperature Tables				
Maximum Fluid Meter Dimensio	•	420°C/788°F (Refer to Tem	,	300°C/570°F	150°C/270°F			
	Valves & Flow Controllers	Valves - Sizes 7 - 12 / FCA Sizes 7,8	Valve/FCA Sizes 0-5	Valves - Sizes 7 - 12 / FCA Sizes 7,8	-			
		valves - 512es / - 12 / FCA 512es /,8			-			
Product Approv Transmitter	Current loop 4-20mA/HART*		detailed specifications on 4-20mA/H	:t Approvals Pages HART-7 transmitter, Hi/Lo-alarm and puls				
	FOUNDATION [™] Fieldbus	Refer to FOUNDATION Fieldbus Section f	or detailed specifications on FOUND	ATION Fieldbus transmitter, Hi/Lo-alarm	and pulse ouput -Not Available 3810G			
Inductive Alarm	ns	Refer to Indu	uctive Alarm Section - Not Available	3810G	Refer to Inductive Alarm Section			
	Interface (incl. LCD)		Refer to Tem	perature Tables				

 Local Operator Interface (incl. LCD)
 Refer to Temperature Tables

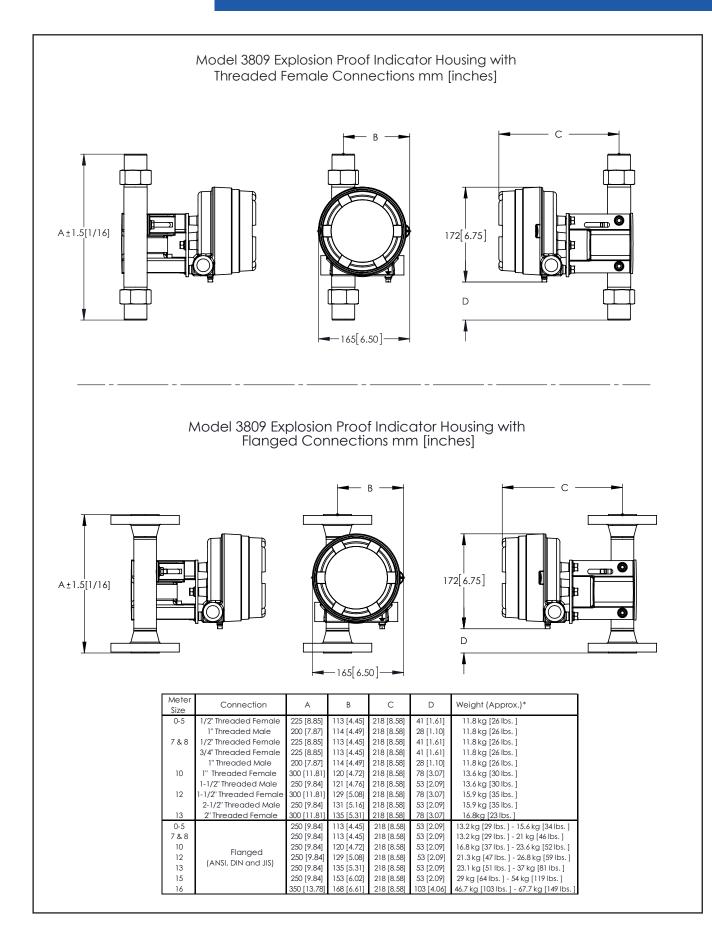
 * The product is designed in accordance with ASME B31.3. The following flange parameters comply with requirements of ASME B16.5

Pressure Rating Nominal Pipe Size NPS Diameter of Flange No. of Bolts Diameter of Bolts


Diameter of Bolt Holes


Bolt Circle

ELF Body/Float Stop/Float/Metering Tube Material Restrictions


ELF BODY MAT'L (#1)	METERING TUBE MAT'L (#6)	OUTLET FLOAT STOP MAT'L (#13)	MAT'L (#13) MAT'L (#14) *	
316 LSS	316SS	INCONEL 625	316SS	316SS
HASTELLOY C-276	HASTELLOY C-276	HASTELLOY C-276	HASTELLOY C-276	HASTELLOY C-276
INCONEL 625	MONEL	INCONEL 625	MONEL	MONEL
TITANIUM GR2	MONEL	INCONEL 626	TITANIUM GR2	MONEL

*Note: Size 0 float is always TITANIUM GR2 FLOAT

Product Dimensions - Explosion Proof Housing

	Flanged - 150LBS, ANSI*										
Tempe	erature	316/	316L	Titaniur	n Gr.2	Alloy C-	276/625				
°F	°C	psi	Bar	psi	Bar	psi	Bar				
-325	-198	275	19.0			290	20.0				
-75	-59	275	19.0	234	16.1	290	20.0				
100	38	275	19.0	234	16.1	290	20.0				
212	100	235	16.2	200	13.8	257	17.7				
392	200	199	13.7	139	9.6	200	13.8				
572	300	148	10.2	88	6.1	148	10.2				
617	325			81	5.6						
752	400	94	6.5			94	6.5				

	Flanged - 600LBS, ANSI*										
Tempe	Temperature		316/316L		m Gr.2	Alloy C-	276/625				
°F	°C	psi	Bar	psi	Bar	psi	Bar				
-325	-198	1440	99.3			1500	103.4				
-75	-59	1440	99.3	1224	84.4	1500	103.4				
100	38	1440	99.3	1224	84.4	1500	103.4				
212	100	1224	84.4	1040	71.7	1494	103.0				
392	200	1034	71.3	724	49.9	1403	96.7				
572	300	917	63.2	550	37.9	1243	85.7				
617	325			538	37.1						
752	400	854	58.9			1063	73.3				

	Flanged - 300LBS, ANSI*										
Tempe	erature	316	316/316L		Titanium Gr.2		276/625				
°F	°C	psi	Bar	psi	Bar	psi	Bar				
-325	-198	720	49.6			750	51.7				
-75	-59	720	49.6	612	42.2	750	51.7				
100	38	720	49.6	612	42.2	750	51.7				
212	100	612	42.2	521	35.9	747	51.5				
392	200	518	35.7	363	25.0	701	48.3				
572	300	458	31.6	276	19.0	622	42.9				
617	325			268	18.5						
752	400	426	29.4			529	36.5				

* Meter sizes 15 and 16 have a Minimum Temperature of -150°F/-101°C

Note: Flanged ELF O-ring is Kalrez 4079.

Т

Flanged - PN16, EN-1092*

	Flaligeu - FN 10, EN-1092										
Tempe	Temperature		316/316L		n Gr.2	Alloy C-	Alloy C-276/625				
°F	°C	psi	Bar	psi	Bar	psi	Bar				
-325	-198	232	16.0			232	16.0				
-75	-59	232	16.0	197	13.6	232	16.0				
100	38	232	16.0	197	13.6	232	16.0				
212	100	196	13.5	167	11.5	232	16.0				
392	200	160	11.0	112	7.7	232	16.0				
572	300	139	9.6	84	5.8	223	15.4				
752	400	129	8.9			173	11.9				

Flanged - 10K, JIS B2220*

3										
Tempe	Temperature		316/316L		n Gr.2	Alloy C-276/625				
°F	°C	psi	Bar	psi	Bar	psi	Bar			
-325	-198	203	14.0			203	14.0			
-75	-59	203	14.0	173	11.9	203	14.0			
100	38	203	14.0	173	11.9	203	14.0			
212	100	203	14.0	173	11.9	203	14.0			
392	200	174	12.0	122	8.4	174	12.0			
572	300	145	10.0	87	6.0	145	10.0			

	Flanged - PN40, EN-1092*									
Tempe	rature	316/316L		Titanium Gr.2		Alloy C-276/625				
°F	°C	psi	Bar	psi	Bar	psi	Bar			
-325	-198	580	40.0			580	40.0			
-75	-59	580	40.0	493	34.0	580	40.0			
100	38	580	40.0	493	34.0	580	40.0			
212	100	490	33.8	416	28.7	580	40.0			
392	200	400	27.6	280	19.3	580	40.0			
572	300	348	24.0	209	14.4	557	38.4			
752	400	322	22.2			431	29.7			

	Flanged - 20K, JIS B2220*									
Tempe	rature	316/316L		Titaniu	n Gr.2	Alloy C-276/625				
°F	°C	psi	Bar	psi Bar		psi	Bar			
-325	-198	493	34.0			493	34.0			
-75	-59	493	34.0	419	28.9	493	34.0			
100	38	493	34.0	419	28.9	493	34.0			
212	100	493	34.0	419	28.9	493	34.0			
392	200	450	31.0	315	21.7	450	31.0			
572	300	421	29.0	252	17.4	421	29.0			
752	400	334	23.0			334	23.0			

NPT - Female - Standard Design (Teflon O-rings)											
316/316L											
Temperature		#C	#0-8		¥10		12	#13			
°F	°C	psi	Bar	psi	Bar	psi	Bar	psi	Bar		
-58 to 100	-50 to 38	2567	177	2321	160	1929	133	1740	120		
212	100	2190	151	1973	136	1653	114	1479	102		
392	200	1842	127	1668	115	1392	96	1247	86		
482	250	1726	119	1552	107	1291	89	1160	80		

	NPT - Female - Standard Design (Teflon O-rings)									
Titanium Gr. 2										
Tempe	erature	#7	7/8	#1	0	#12		#13		
°F	°C	psi	Bar	psi	Bar	psi	Bar	psi	Bar	
-58 to 100	-50 to 38	2147	148	1929	133	1610	111	1450	100	
212	100	1813	125	1639	113	1363	94	1233	85	
392	200	1334	92	1204	83	1001	69	899	62	
482	250	1160	80	1044	72	870	60	783	54	

NPT - Female - Standard Design (Teflon O-rings) Hastellov Allov C-276

psi

3162

2857

2480

#10

Bar

218 2640 182

197

171

161

#12

psi Bar

1944 134

143

2379 164

2074

#13

psi Bar

164

148

129

121

392

572

2379

2147

1871

1755

#7/8

psi Bar

3510 242

3162 218

2582 178 2335

2756 190

NPT - Female - ELF - 2500LBS Design									
316/316L									
Temp	Temperature ELF								
°F	°C	psi Bar							
-58 to 100	-50 to 38	6000	414						
212	100	5100	351.6						
392	200	4311 297.							
572	300	300 3822 263.5							

NPT - Female - 7-12 - 2500LBS Design								
316/316L								
Temp	#7	-12						
°F	Bar							
-31 to 100	-35 to 38	6000	413.7					
212	100	5100	351.6					
392	200	4311	297.2					
550	288	3822	263.5					

Titanium Gr. 2

-35 to 38

100

#7-12

5100 351.6

4335 298.9

5179 357.1

psi Bar

Temperature

-31 to 100

212

550

NPT - Female - ELF - 2500LBS Design NPT - Female - 7-12 - 2500LBS Design Titanium Gr. 2 Temperature ELF psi Bar 5100 352 -50 to 38 -58 to 100 212 392 100 4335 298.9 200 3017 208.0 572 300 2293 158.1

NPT - Female - ELF - 2500LBS Design										
Alloy C-276/ Alloy 625										
Temp	erature	ELF								
۴F	°C	psi	Bar							
-58 to 100	-50 to 38	6250	431							
212	100	6228	429.4							

200

300

)	392	200	3017	208.0						
1	550	288	2293	158.1						
n	NPT - Fema	ale - 7-12 - 25	00LBS	Design						
	Alloy C-276/ Alloy 625									
			,							
		erature		-12						
		,		-12 Bar						
	Temp	erature	#7·							
1	Temp °F	erature °C	, #7- psi	Bar						

288

Female ELF - 2500LBS Design: O-ring is Kalrez 4079 Female Sizes 7-12 - 2500LBS Design: O-ring is Kalrez 3018

5842 402.8

5179 357.1

	NPT - Female - Standard Design (Teflon O-rings)											
Inconel Alloy 625												
Tempe	Temperature #7/8 #10 #12 #13											
°F	°C	psi	Bar	psi	Bar	psi	Bar	psi	Bar			
-58 to 100	-50 to 38	4047	279	3640	251	3046	210	2741	189			
212	100	4047	279	3640	251	3046	210	2741	189			
392	200	3902	269	3510	242	2930	202	2640	182			
482	250	3800	262	3423	236	2857	197	2567	177			

Temperature

°C

-50 to 38

100

200

250

°F

-58 to 100

212

392

482

Product Specifications - Pressure/Temperature Ratings Tables (continued)

	NPT - Male - Standard Design												
	316/316L												
Tempe	erature	#7	7/8	#1	0	#	12						
°F	°C	psi	Bar	psi	Bar	psi	Bar						
-325	-198	4699	324	3785	261	3684	254						
100	38	4699	324	3785	261	3684	254						
212	100	4018	277	3234	223	3147	217						
392	200	3379	233	2712	187	2654	183						
572	300	3002	207	2408	166	2350	162						
752	400	2785	192	2248	155	2190	151						

NPT - Male - Standard Design												
Titanium Gr. 2												
Tempe	erature	#7	7/8	#1	0	#	12					
°F	°C	psi	Bar	psi	Bar	psi	Bar					
-75	-59	3046	210	3147	217	3075	212					
100	38	3046	210	3147	217	3075	212					
212	100	2596	179	2683	185	2611	180					
392	200	1900	131	1973	136	1914	132					
572	300	1450	100	1494	103	1450	100					
617	325	1349	93	1407	97	1363	94					

NPT - Male - ELF - 2500LBS Design*									
	316/316L	-							
Temp	erature	E	LF						
°F	°C	psi	Bar						
-58 to 122	-50 to 50	6000	414						
212	100	5100	351.6						
392	200	4311	297.2						
572	300	3822	263.5						

NPT - Mal	NPT - Male - ELF - 2500LBS Design*										
	Titanium Gr. 2										
Temp	erature	E	LF								
°F	°C	psi	Bar								
-58 to 122	-50 to 50	5100	352								
212	100	4335	298.9								
392	200	3017	208.0								
572	300	2293	158.1								

NPT - Male - Standard Design												
	Hastelloy Alloy C-276											
Tempe	erature	#7	7/8	#1	0	#	12					
°F	°C	psi	Bar	psi	Bar	psi	Bar					
-325	-198	4989	344	5163	356	5033	347					
100	38	4989	344	5163	356	5033	347					
212	100	4511	311	4670	322	4540	313					
392	200	3931	271	4061	280	3960	273					
572	300	3466	239	3597	248	3495	241					
752	400	3176	219	3292	227	3205	221					

	NPT - Male - Standard Design											
5												
		Inc	onel All	oy 625								
Tempe	erature	#7	7/8	#1	0	#	12					
°F	°C	psi	Bar	psi	Bar	psi	Bar					
-325	-198	5758	397	5961	411	5802	400					
100	38	5758	397	5961	411	5802	400					
212	100	5758	397	5961	411	5802	400					
392	200	5540	382	5729	395	5584	385					
572	300	5279	364	5453	376	5323	367					
752	400	5062	349	5236	361	5105	352					

	*									
Alley, C. 070/ Alley, C05	NPT - Male - ELF - 2500LBS Design*									
Alloy C-276/ Alloy 625	Alloy C-276/ Alloy 625									
Temperature ELF										
°F °C psi Bar										
-58 to 122 -50 to 50 6250 431										
212 100 6228 429.	4									
392 200 5842 402.	8									
572 300 5179 357.	1									

* ELF 2500# Design (Kalrez 4079)

Product Specifications - Temperature Cut-off Tables

Meter with 316 SS Mechanical Indicator

	Process Te	emperature	Ambient Temperature		
Connection type	°C °F		°C	°F	
Flanged / MNPT	-198 to 420	-325 to 788	-55 to 75	-67 to 167	
Threaded female	-50 to 300*	-58 to 572*	-55 to 75	-67 to 167	
ETFE lined	-30 to 150	-22 to 302	-30 to 40	-22 to 104	

Ambient Temperatures with Electrical Components

Option	°C	°F
Transmitter	-40 to 70	-40 to 158
Transmitter w/display	-20 to 70	-4 to 158
Inductive switches	-40 to 70	-40 to 158

Meter with Electrical Components - Ambient Temperature 30°C / 86°F

	Process Temperature					
Connection type	°C	°F				
Transmitter	-198 to 420	-325 to 788				
Transmitter w/display	-198 to 420	-325 to 788				
Inductive switches	-198 to 420	-325 to 788				

Meter with Electrical Components - Ambient Temperature 60°C / 140°F

	Process Temperature					
Connection type	°C	°F				
Transmitter	-198 to 200	-325 to 392				
Transmitter w/display	-198 to 175	-325 to 350				
Inductive switches	-198 to 200	-325 to 392				

Meter with Aluminum Mechanical Indicator

Meter With Aluminan Meenandal Maleator											
	Process Te	emperature	Ambient Temperature								
Connection type	°C	°F	°C	°F							
Flanged / MNPT	-198 to 300	-325 to 572	-55 to 75	-67 to 167							
Threaded female	-50 to 300*	-58 to 572*	-55 to 75	-67 to 167							
ETFE lined	-30 to 150	-22 to 302	-30 to 40	-22 to 104							

Insulation required when process temperatures are greater than 300°C/572°F. Refer to Instruction Manual for details

	Minimum	Temperature	Maximum	Temperature
Elastomer Materials	°F	°C	°F	°C
Kalrez 4079	-58	-50	572	300
Kalrez 3018	-31	-35	550	288
Teflon PTFE	-58	-50	482	250
Viton A	5	-15	400	204
Teflex (Viton core, FEP jacket)	5	-15	400	204

Product Specifications - Capacity Tables, 3809/3810

					wat	ter ³			air	1,2		Pressure																																																								
				max		max		max		max		Pressure	drop		Max	ľ																																																				
Meter	Meter	Float	Float	volume		mass		volume		volume		drop	inches	VIC	visc.	PED																																																				
type	size	code		flow	unit	flow	unit	flow	unit	flow	unit	mbar	WC	cSt	cSt	category																																																				
	0		Titanium	0.96		0.25		1.6		44		12	5	1	5	SEP																																																				
ELF	1	1		1.3		0.34		2.1		59		12	5	1	10	SEP																																																				
19 E	2	ł.		3.6		0.96		4.9		130		12	5	1	20	SEP																																																				
MT3809	3	0		10		2.8	g/h	12	scfh	350	l _n ∕h	12	5	1	35	SEP																																																				
MT	4			21		5.5		23		650		32	13	1	70	SEP																																																				
	5	ł		42		11		53		1400		38	15	1	100	SEP																																																				
		Α		25		0.11		0.49		0.8		30	13	1	40	SEP																																																				
		B ⁴		65		0.28		1.2		2.1		30	13	1	20	SEP																																																				
	7	C		130		0.59		2.4		3.9		30	13	1	120	SEP																																																				
		D ⁴																																																																		
				200		0.88		3.7		6.1		35	15	1	20	SEP																																																				
		A		250		1.1		5.2		8.5		45	19	2	250	SEP																																																				
	8	B		400		1.7		7.7		12		55	23	1	180	SEP																																																				
		С		650		2.8		11		19		60	25	2	475	SEP																																																				
		D		1000		4.4		21		35		130	53	1.5	250	SEP																																																				
		A		1200		5.2		19		31		60	25	5	300	CAT I, II or III																																																				
0	10	B	SS316	1500		6.6		31		51		70	29	1.5	300	CAT I, II or III																																																				
MT3809 / MT3810		С	33310	2400		10		41		68		85	35	7	300	CAT I, II or III																																																				
MT		D		3500		15		65		100		155	63	4	300	CAT I, II or III																																																				
/ 6		A		4000		17		67		100		50	21	50	300	CAT I, II or III																																																				
380	12	B		6000		26		95		150		60	25	30	300	CAT I, II or III																																																				
W		С		8000		35		150		240		150	61	2	300	CAT I, II or III																																																				
		D		10000		46		210		340		300	121	2	300	CAT I, II or III																																																				
		A					1			1	6500	28		100		160		50	21	50	300	CAT I, II or III																																														
	13	B		9500		41	-				260	60	25	50	300	CAT I, II or III																																																				
		С														· · · · ·		i/n	55	-													8																					İ						200		330		100	41	2.5	300	CAT I, II or III
		D																											-	20000		88																																	390		650	
	45	A																											20000		88	-		390		640		110 3/h 140	45	8	300	CAT I, II or III																										
	15	B															30000		130	- g/m	g/m	550	scfm	900	m _n ³/h	n _n ³ /h 140 280	57	7	300	CAT I, II or III																																						
		С		40000		170		750	-	1200			113	5	300	CAT I, II or III																																																				
	10	A		49000		210		N/A		N/A		160	65	15	300	CAT I, II or III																																																				
	16	B		70000		300 440		N/A		N/A		210	85	10	300	CAT I, II or III																																																				
		C		100000				N/A		N/A		300	121	5	300	CAT I, II or III																																																				
	7	GA		110 170		0.48		2.2		3.7		25 50	11 21	1	2	SEP SEP																																																				
		GB		250		1.1		3.5 5.1		5.8		30	13	1	2	SEP																																																				
		A B	Hastel-C	420		1.1		8.5		8.3		45	15	1	2	SEP																																																				
	8	C		500		2.2		9.9		13 16		43	19	1	2	SEP																																																				
						3.7				30																																																										
10		D A		850 1400		3.7		18 27		30 45		130 45	53 19	1	2	SEP CAT I, II or III																																																				
ned																																																																				
E Li	10	B		2000		8.8		39		63		106	43	2	3	CAT I, II or III																																																				
9 TF		C		2400		10		47		77		90	37	2	3	CAT I, II or III																																																				
MT3809 TFE Lined ⁵		D		3000		13		58		95		130	53	2	3	CAT I, II or III																																																				
МТЗ		A		3000		13		58		95		50	21	2	3	CAT I, II or III																																																				
≥ 12	12	B	PVDF	4000		18		73		120		75	31	2	3	CAT I, II or III																																																				
				5000		22		94		150		85	35	2	3	CAT I, II or III																																																				
		D		6000		26		110		180		120	49	2	3	CAT I, II or III																																																				
		A		6000		26 35		110		180		95	39	2	3	CAT I, II or III																																																				
	13	B		8000				150		250		125	51 91	2	3	CAT I, II or III																																																				
		C		12000		53		220		370		200	81	2	3	CAT I, II or III																																																				
		D		15000		66		280		470		225	91	2	3	CAT I, II or III																																																				

Notes: 1.

Air flows in scfm or scfh are given at 70°F and 14.7 psia

2. Air flows in mn3/h or ln/h are given at 0°C and 1.013 bar(a)

3. Water flows in I/h, gph and gpm are given at 70°F

4. Minimum operating pressure required 7 psig / 0.48 bar(g)

5. For TFE lined gas applications operating pressure must be greater than 29 psia / 2 bar(a)

Design Features

- 4-20 mA analog output for flowrate
- Bell-202 modulated HART digital communication over the 4-20 mA signal
- · Current loop powered 2-wire connection
- User selectable 0% and 100% analog output ranges with optional smoothing
- Flexible (mix & match) units of measure for flowrates, totals, temperatures, densities, etc.
- Two flow totalizers: Resettable and inventory totalization
- User configurable, scalable pulse output for various engineering units
- · Hi- and Lo-flow alarm output

Description

The 4-20 mA with HART transmitter is a compact microprocessor device designed to interface directly with the Model MT3809. This transmitter includes a Hi- and Lo alarm switch output and a pulse output.

The HART digital communication signals are superimposed on top of the 4-20 mA signal, allowing communication of more than just the process variable.

The transmitter is HART-programmable or for numerous variables such as flow rate, totalization, calibration factors, and high-low alarm parameters. It is programmable with easy-to-use hand held configurators. Prior to shipment, commonly used default values are programmed by Brooks to ensure ease of operation and quick startup. However, parameters may be reprogrammed by the user if needed. Flow rate information may be viewed locally at the meter scale, LCD display or displayed remotely.

Power supply voltage	21 to 30 Vdc: (2-wire current loop transmitter)						
Loop current / current consumption range							
Hi- and Lo-alarm outputs	Open collector alarm output Optically isolated outputs assignable to alarms. • Max. off-state voltage: 30 Vdc • Max. off-state current: 0,05 mA • Max. on-state voltage: 1.2 Vdc • Max. on-state current: 20 mA						
Pulse Output	 Optically isolated. Scalable to a variety of engineering unit systems (pulses per liter, gallons, etc.). Range: 1 Hz to 1 kHz Max. off-state voltage: 30 Vdc Max. off-state current: 0.05 mA Max. on-state voltage: 1.2 Vdc Max. on-state current: 20 mA 						
Temperature Specification	See Temperature Cut-off Table						
Electrical Connector	 M20 x 1,5 according to ISO (1/2" NPT, 3/4" NPT (F) or cable gland optional) Brass/Nickel plated cable gland cable diameter range 8-11 mm (Aluminum housing) Stainless steel cable gland cable diameter range 7-10.5 mm (SS housing) 						
Linearity	Less than 1% at max. current.						
Temperature influence	Less than 0.04% per °C.						
Voltage influence	Less than 0.002% / Vdc.						
Load resistance influence	± 0.1% full scale.						
HART Revision	HART-7						

Design Features

- FOUNDATION[™] Fieldbus digital communication network interface
- Ease of wiring and installation with a single 2-wire bus connection
- Powered over 2-wire FOUNDATION[™] Fieldbus connection
- Flexible (mix & match) units of measure for flowrates, totals,temperatures, densities, etc.
- Two flow totalizers: Resettable and inventory totalization
- User configurable, scalable pulse output for various engineering units
- · Hi- and Lo-flow alarm output

Description

Power supply voltage	9-32Vdc
Power supply protection	Protected against reverse polarity
Current consumption	12 mA
	Entire transmitter is powered from 2-wire bus
Hi- and Lo-alarm outputs	Open collector alarm output Optically isolated outputs assignable to alarms. • Max. off-state voltage: 30 Vdc • Max. off-state current: 0,05 mA • Max. on-state voltage: 1.2 Vdc • Max. on-state current: 20 mA
Pulse Output	 Optically isolated. Scalable to a variety of engineering unit systems (pulses per liter, gallons, etc.). Range: 1 Hz to 1 kHz Max. off-state voltage: 30 Vdc Max. off-state current: 0.05 mA Max. on-state voltage: 1.2 Vdc Max. on-state current: 20 mA
Temperature Specification	See Temperature Cut-off Table
Electrical Connector	 M20 x 1,5 according to ISO (1/2" NPT, 3/4" NPT (F) or cable gland optional) Brass/Nickel plated cable gland cable diameter range 8-11 mm (Aluminum housing) Stainless steel cable gland cable diameter range 7-10.5 mm (SS housing)
Linearity	Less than 1%
Temperature Influence	Less than 0.04% per °C
Voltage influence	Less than 0.002% / Vdc
FOUNDATION Fieldbus Revision	ITK6

The FOUNDATION[™] Fieldbus transmitter is a compact microprocessor device designed to interface directly with the Model MT3809. The transmitter communicates over the 2-wire network per the international FOUNDATION[™] Fieldbus standard for access to numerous variables such as flow rate, totalization, calibration factors, and high-low alarm parameters.

Design Features

- 1 or 2 normally open inductive limit switches
- Optional intrinsically safe power supply/amplifier/relay unit
- · For low or high limit signaling/switching
- Front adjustable
- Optional Relay Power Supply recommended

Description

One or two electronic limit switches can be installed in the indicator housing to allow signaling or switching functions on a preset flow value. The limit switch operates as a slot initiator that is inductively actuated by a disc mounted on the pointer shaft. Any flow value can be used for setting the limit value by sliding the initiator along the indicator scale. Minimum setting distance between two limit switches is approximately 40% full scale. The position of the initiator also serves to visually indicate the signaling set value. Settings can be adjusted by removing the indicator cover, loosening, moving and retightening of the alarm indication needle, and replacement of the indicator front cover.

Power supply voltage	5 - 25 Vdc: (8 Vdc nominal)				
Impedance	- Approximately 1 kohm with cam absent				
	Approximately 8 kohm with cam present				
Ambient and process temperature	See Temperature Cut-off Table				
Electrical Connector	M20 x 1,5 according to ISO (1/2" NPT, 3/4" NPT (F) or cable gland optional)				
	 Brass/Nickel plated cable gland cable diameter range 8-11 mm (Aluminum housing) 				
	 Stainless steel cable gland cable diameter range 7-10.5 mm (SS housing) 				

Optional Valves, Flow Controllers and Electronic Features

Optional Valves and Flow Controllers

Needle valves and flow controllers may be externally piped into the inlet or outlet side of the instrument. Needle valves can be supplied up to size 12 1-1/2" maximum 10000 I/hr / 46 gpm water equivalent. Needle valves and flow controllers will be supplied separately with the flanged meter.

Optional Electronic Features

Electronic equipment available with the Model MT3809 includes:

- Current loop 4-20 mA/HART Transmitter with Alarms and Pulse Output
- FOUNDATION Fieldbus Transmitter with Alarms and Pulse Output

В

· Inductive Alarms; stand-alone or in combination with above transmitters

...

Refer to the table below for the model code nomenclature for the electronics options. All models are designed to be either intrinsically safe or explosion proof.

Nomenclature and Type Designation

MT3809

I-IV	XV		
xv	Electronics configuration	B, C D L M U	Indicator with inductive alarm, 1 or 2 switches Transmitter, 4 – 20 mA / Hart, with optionally: - pulse output - inductive alarm contact(s) - LOI or combinations thereof. Transmitter, FOUNDATION Fieldbus, with optionally: - pulse output - inductive alarm contact(s) - LOI or combinations thereof.

Product Approvals

	М	eter	Option	ns			
Aechanical Mark Mark Aechanical A		HART Transmitter			Standards/Directives/Marking	Declaration/Certifica te	
		✓	~	~	EMC Directive (2014/30/EU)	Declaration	
CE	✓	✓	✓	✓ RoHS Directive (2011/65/EU)		Declaration	
'	~	~	~	~	Pressure Equipment Directive (2014/68/EU)	Declaration	
				~	IEC 61508-2: 2010	Declaration	
		~			NAMUR NE21, NE43	Declaration	
		~	<	~	IEC 60529 (Stainless Steel Enclosure)	DEKRA Certificate	
		~	~	~	IEC 60529 (Aluminum Enclosure)	DEKRA Certificate	
	~				IEC 60529 (Stainless Steel or Aluminum Enclosure)	DEKRA Certificate	
ATEX		~	~	~	II 2 G Ex db IIC T6T1 Gb II 2 D Ex tb IIIC T85°CT450°C Db	DEKRA 13ATEX0086X	
IECEX					Ex db IIC T6…T1 Gb Ex tb IIC T85°C…T450°C Db	IECEX DEK13.0027X	
					For information regarding the dimension of the flameproof joints the contacted. Electrical Connections Conditions: For application in environments requiring EPL Gb the threaded entries be sealed with plugs, cable entry devices such as glands or condurant are Ex db IIC Gb approved. For application in environments requiring EPL Db the threaded entries be sealed with plugs, cable entry devices such as glands or condurant ex to the threaded entries be sealed with plugs, cable entry devices such as glands or condurant ex to the threaded entries be sealed with plugs, cable entry devices such as glands or condurant ex to the threaded entries be sealed with plugs, cable entry devices such as glands or condurant ex to the threaded entries be sealed with plugs, cable entry devices such as glands or condurant ex to the threaded entries be sealed with plugs, cable entry devices such as glands or condurant ex to the threaded entries be sealed with plugs, cable entry devices such as glands or condurant ex to the threaded entries be sealed with plugs, cable entry devices such as glands or condurant ex to the threaded entries be sealed with plugs, cable entry devices such as glands or condurant ex to the threaded entries be sealed with plugs, cable entry devices such as glands or condurant ex to the threaded entries be sealed with plugs, cable entry devices such as glands or condurant ex to the threaded entries be sealed with plugs, cable entry devices such as glands or condurant extended entries be sealed with plugs, the threaded entries be the threaded entries be the threaded entries be sealed with plugs, the threaded entries be the t	s of the enclosure shall t entry devices w hich s of the enclosure shall t entry devices w hich the optional surge	
	~					MBID 022	
€ x∕					Special conditions for safe use: Enclosure contains glass & painted aluminum parts. If it is mounter use of category 2G or 2D apparatus is required, it must be installed source due to propagating brush discharge sparks are excluded. The actual maximum surface temperature of the equipment depee equipment itself, but on operating conditions of the process fluid/ equipment. The equipment by itself does not generate heat. Due t temperature class is marked as a range. The maximum permitted a temperature limits can be found in the operating instructions. At start up especially for gas applications, ensure that the pressure	such that ignition nds not on the gas flowing through the o this reason the mbient and process is gradually increased result in a fast	
		Mark Mark	ATEX X	ATEX Y Lansmitter	Image: Control of the second state	Mark standards/Directives/Marking Standards/Directives/Marking Comparison Standards/Directives/Marking Comparison V V ENC Directive (2014/30/EU) V V V Pessure Equipment Directive (2014/68/EU) V V V RCG 60529 (Stainless Steel Enclosure) V V V REC 60529 (Stainless Steel or Aluminum Enclosure) EDEX V V V V REC 60529 (Stainless Steel or Aluminum Enclosure) EDX V V V V REC 60529 (Stainless Steel Tables) EDX V V V II2 G Ex th IIC T85'CL. 1450'C Db Standards used for evaluation: (T3A TEX0086X and ECEX DEXT ENGO79-0:2014 and C38'CL. 1450'C D Standards used for evaluation: (T3A TEX0086X and ECEX DEXT ENGO79-0:2014 and C38'CL and C38'CL	

Table continued on next page

Product Approvals (continued)

			Vleter	Options							
Declarations	Mark	Mechanical	HART Transmitter	Foundation Field Bus Transmitter	Inductive Alarm	Standards/Directives/Marking Declaration/Certificate					
Explosion safety "Intrinsic Safety (ia)"	ATEX		~	~	~						DEKRA 13ATEX0086X IECEx DEK13.0027X
"Non-sparking (nA)"	(Ex)							_			
"Enclosure Dust (tc)"	IECEX					Option	Enclosure Type	M1	M2	M1 = Apparatus with Transmitter only M2 = Apparatus with Inductive Alarm	
For temperature limits, see Table: Process and ambient						al Display	Aluminum	√ √	✓ ✓	II 2 G Ex ia IIC T6T4 Gb II 2 D Ex ia II II 3 G Ex nA IIC T6T4 Gc II 3 D Ex tc II II 3 G Ex ic IIC T6T4 Gc II 3 D Ex tc II	IC T85 °CT135 °C Dc
temperature limits Intrinsic Safety / Non- Sparking / Enclosure						Unit without Digital Display	Stainless Steel	✓ ✓	✓ ✓	II 1 G Ex ia IIC T6T3 Ga II 2 D Ex ia II II 3 G Ex nA IIC T6T3 Gc II 3 D Ex tc II II 3 G Ex ic IIC T6T3 Gc II 3 D Ex tc II II 3 G Ex ic IIC T6T3 Gc II 3 D Ex ic III	IC T85 °CT200 °C Dc
dust						Unit with	Stainless Steel High Temperature	✓✓	✓ ✓	II 1 G Ex ia IIC T6T2 Ga II 2 D Ex ia II II 3 G Ex nA IIC T6T2 Gc II 3 D Ex tc II II 3 G Ex ic IIC T6T2 Gc II 3 D Ex tc III	IC T85 °CT300 °C Dc
						Display	Aluminum	✓ ✓	✓ ✓	II 2 G Ex ia IIC T4 Gb II 2 D Ex ia IIIC T II 3 G Ex nA IIC T4 Gc II 3 D Ex tc IIIC T II 3 G Ex ic IIC T4 Gc II 3 D Ex ic IIIC T	135 °C Dc
						Unit with Digital Display	Stainless Steel	✓✓	✓ ✓	II 1 G Ex ia IIC T4T3 Ga II 2 D Ex ia II II 3 G Ex nA IIC T4T3 Gc II 3 D Ex tc II II 3 G Ex ic IIC T4T3 Gc II 3 D Ex tc III II 3 G Ex ic IIC T4T3 Gc II 3 D Ex ic III	C T135 °CT200 °C Dc
						Unit wi	Stainless Steel High Temperature	✓✓	✓ ✓	II 1 G Ex ia IIC T4T2 Ga II 2 D Ex ia II II 3 G Ex nA IIC T4T2 Gc II 3 D Ex tc II II 3 G Ex ic IIC T4T2 Gc II 3 D Ex tc III II 3 G Ex ic IIC T4T2 Gc II 3 D Ex ic III	C T135 °CT300 °C Dc
						IEC 600 15:2010 Special • In cas Gc (Cal sources • In cas (Catego parts m • For m specific applicat • From 1 • On un outside • In cas	60079-31:2014 + Cor.:2012, IEC 60079- PL Gb (Category 2 G) or EPL istalled such, that ignition where the use of EPL Db barent cover and the painted ush discharges is excluded. ion instructions contain the equipment for the particular ted to earth. tisplay shall only be done use Ex nA and Ex tc, the				
										led with a high strength locking compound o	

Table continued on next page

Approval Certificates for Meters, Transmitters and Alarms (continued)

Product Approvals (continued)

		Ν	/leter	Option	S			
Declarations	Mark	Mechanical	HART Transmitter	Foundation Field Bus Transmitter	Inductive Alarm	Standards/Directives/Marking	Status/Certificate	
Explosion safety "Intrinsic Safety (ia)" "Non-sparking (nA)" "Enclosure Dust (tc)"	UL CULUS LISTED		~		~	Class I, Division 1, Groups A, B, C, and D; Class II, Division 1, Groups E, F, and G; Class III Hazardous Locations Class I, Division 2, Groups A, B, C, and D; Class II, Division 2, Groups F and G; Class III Hazardous Locations Class I, Zone 1, AEx ia IIC T2/T3/T4/T5/T6 Gb Zone 21, AEx ia IIIC T85°C/T100°C/T135°C/T200°C/T300°C Db Class I, Zone 2, AEx nA IIC T2/T3/T4/T5/T6 Gc Zone 22, AEx tc IIIC T85°C/T100°C/T135°C/T200°C/T300°C Dc For temperature limits, see Table: Process and ambient temperature limits Intrinsic Safety / Non-Sparking / Enclosure dust	E73889	
Explosion safety "Flame Proof"	CSA		~	~	~	Ex d IIC T6 Gb / Class I, Div.1 Group A, B, C and D Ex tb IIIC T85 Db / Class II, Div.1, Groups E, F, and G Class I, Zone 1, AEx d IIC T6 Gb / Zone 21, AEx tb IIIC T85 Db For temperature limits, see Table: Process and ambient temperature limits Flame Proof / Ex-d	14.2628516	
NEMA 4X - Watertight			~	~	~	NEMA 250 (Stainless Steel Enclosure)	CSA Certificate 14.2628516	
NEMA 4X - Watertight		~				NEMA 250 (Stainless Steel or Aluminum Enclosure)	DEKRA Certificate	
CRN		~	~	~	~	ASME 31.3	CRN Registration Number	

		ľ	Vleter	Option	IS		
Declarations	Mark	Mechanical	HART Transmitter	Foundation Field Bus Transmitter	Inductive Alarm	Standards/Directives/Marking	Status/Certificate
Customs Union - Russia Declaration	EAC	↓	~		~	TR CU 032/2013 "On safety of the equipment operating under excessive pressure"	ТС N RU Д- U.AY04.B.05988
	EHC		~		~	Customs Union & Russia TR CU 012/2011 1 Ex d IIC «T6…T1» GbX : Ex tb IIIC «T85°C…T400°C» Db X	RU C- HU.ГБ08.В.00741
Explosion safety "Intrinsic Safety (ia)" "Non-sparking (nA)" "Enclosure Dust (tc)"	EHC		~		~	Customs Union & Russia TR CU 012/2011 Zone 1 / Zone2 - Intrinsic safety ia/ic, Zone 2 non-sparking (nA)	RU C- HU.ГБ08.В.00741
Explosion safety "Flame Proof"	NEPSI NEPSI		~		~	Exd IIC T6T1 Gb : Ex tb IIIC T85°C…T400°C Db	GYJ14.1304X
	CCOE		~		~	Exd IIC T6T1 Gb : Ex tb IIIC T85°C…T400°C Db	CCEs P349406/1
	KOSHA		~		~	Exd IIC T6T1 Gb : Ex tb IIIC T85°C…T400°C Db	15-AV4BO-0353
Explosion safety "Intrinsic Safety (ia)" "Non-sparking (nA)" "Enclosure Dust (tc)	NEPSI NEPSI		~		~	Zone 1 - Intrinsic safety (ia), Zone 2 non-sparking (nA/ic)	GYJ15.1039X GYJ15.1040X

Process and Ambient Temperature Limits

				N	laximum Process	s Temperature (°C)	
		Temperature Class	Т6	T5	T4	Т3	T2	T1
Approval type	Meter type	Ambient Temperature (°C)						
	E 1	-40 to 32.5	85	100	135	200	300*	420*
	Flanged and Male	-40 to 47	85	100	135	200	300*	N/A
	Threaded	-40 to 58	85	100	135	200	N/A	N/A
	versions	-40 to 65	85	100	135	N/A	N/A	N/A
ex d		-40 to 70	85	100	N/A	N/A	N/A	N/A
proof / Ex-c ATEX/IECex	ELF and	-40 to 47	85	100	135	200	300*	N/A
proof ATEX/	Female	-40 to 58	85	100	135	200	N/A	N/A
	Threaded	-40 to 65	85	100	135	N/A	N/A	N/A
Flame [.] CSA /	versions	-40 to 70	85	100	N/A	N/A	N/A	N/A
E O		-40 to 64	85	100	135	150	N/A	N/A
	ETFE Lines versions	-40 to 65	85	100	135	N/A	N/A	N/A
	Versions	-40 to 70	85	100	N/A	N/A	N/A	N/A
	NOTE	* For application with required. Refer to inst	• •	•	or greater than +	300 °C heat shie	eld and custom	installation

]	Maximum Process Temperature (°C)							
		Meter Option	Wi	thout Digital Disp	olay	With o	r without Digital I	Display		
		Temperature Class	T6	Т6	T5	T4	Т3	T2		
Approval type	Housing type	Ambient Temperature (°C)	Without Inductive Alarm	With Inductive Alarm	With or without Inductive Alarm	With or without Inductive Alarm	With or without Inductive Alarm	With or without Inductive Alarm		
		-40 to +35	85	85	100	135	N/A	N/A		
		-40 to +40	85	85	100	126	N/A	N/A		
		-40 to +45	85	85	100	115	N/A	N/A		
	Aluminum	-40 to +50	85	85	100	104	N/A	N/A		
	Aluminum	-40 to +55	85	84	94	94	N/A	N/A		
		-40 to +60	84	76	84	84	N/A	N/A		
dust		-40 to +65	76 **	69 **	76	76	N/A	N/A		
Intrinsic Safety / Non-Sparking / Enclosure dust ATEX/IECex		-40 to +70 *	69 **	N/A	69	69	N/A	N/A		
losu		-40 to +40	85	85	100	135	200	N/A		
Enc		-40 to +45	85	85	100	135	194	N/A		
g .	Stainless	-40 to +50	85	85	100	135	167	N/A		
rkin Cex	Stainless	-40 to +55	85	85	100	135	138	N/A		
lon-Sparkin _i ATEX/IECex	Oleci	-40 to +60	85	85	100	110	110	N/A		
On-		-40 to +65	85 **	69 **	86	86	86	N/A		
N N		-40 to +70 *	69 **	N/A	69	69	69	N/A		
ety		-40 to +35	85	85	100	135	200	300		
: Sai		-40 to +40	85	85	100	135	200	267		
nsic		-40 to +45	85	85	100	135	200	221		
ntri	Stainless Steel High	-40 to +50	85	85	100	135	182	182		
_	Temp	-40 to +55	85	85	100	135	149	149		
	romp	-40 to +60	85	85	100	119	119	119		
		-40 to +65	85 **	69 **	91	91	91	91		
		-40 to +70 *	69 **	N/A	69	69	69	69		
	NOTE	* Maximum Ambient ** Not Applicable/Ava) Tablas santinus			

Tables continued on next page

Process and Ambient Temperature Limits (continued)

				Maximum Process Temperature (°C)							
		Meter Option	Wit	thout Digital Disp	olay	With or without Digital Display					
		Temperature Class	Т6	Т6	T5	T4	Т3	T2			
Approval type	Housing type	Ambient Temperature (°C)	Without Inductive Alarm	With Inductive Alarm	With or without Inductive Alarm	With or without Inductive Alarm	With or without Inductive Alarm	With or without Inductive Alarm			
		-40 to 40	85	85	100	126	N/A	N/A			
		-40 to 45	85	85	100	115	N/A	N/A			
		-40 to 50	85	85	100	104	N/A	N/A			
	Aluminum	-40 to 55	85	84	94	94	N/A	N/A			
		-40 to 60	84	76	84	84	N/A	N/A			
intrinsic Safety / Non-Sparking / Enclosure dust cULus		-40 to +65	76	69	76	76	N/A	N/A			
Le o		-40 to +70 *	69	N/A	69	69	N/A	N/A			
losu		-40 to 40	85	85	100	135	200	N/A			
Enc		-40 to 45	85	85	100	135	194	N/A			
g /	Stainless	-40 to 50	85	85	100	135	167	N/A			
rkin s	Stainless	-40 to 55	85	85	100	135	138	N/A			
-Spark כULus	Oleel	-40 to 60	85	85	100	110	110	N/A			
- cl		-40 to +65	85	69	86	86	86	N/A			
N N		-40 to +70 *	69	N/A	69	69	69	N/A			
ety		-40 to 40	85	85	100	135	200	267			
: Saf		-40 to 45	85	85	100	135	200	221			
nsic	Stainless	-40 to 50	85	85	100	135	182	182			
ntri	Steel High	-40 to 55	85	85	100	135	149	149			
_	Temp	-40 to 60	85	85	100	119	119	119			
		-40 to +65	85	69	91	91	91	91			
		-40 to +70 *	69	N/A	69	69	69	69			
	NOTE	* Maximum Ambient	Temperature fo	r Inductive alarm	n = +66 °C						

Electrical Data - Intrinsic Safety

Electronics configuration	Function / signal	Ui,V	li, mA	Pi, mW	Ci, nF	Li, µH	Recommended Barrier #
	Signal 4-20mA (J1 terminals 12+ and 13-)	28	75	525	2,2	0.365	Stahl Type : 9001/01-280-075-101
	Pulse output (J1 terminals 7+ and 8-)	28	84	660	≈0	≈0	Stahl Type : 9002/77-280-094-001
IART	Alarm circuits A (J1 terminals 1+ and 2-)	10,6	19,1	51	≈0	≈0	Pepperl & Fuchs: KFA5-SR2-EX2.W KFA6-SR2- EX2.W
A / F		10,5	13	34	≈0	≈0	Pepperl & Fuchs: KFD2-SR2-EX2.W
4-20mA / HART	Alarm circuits B (J1 terminals 4+ and 5-)	10,6	19,1	51	≈0	≈0	Pepperl & Fuchs: KFA5-SR2-EX2.W KFA6-SR2- EX2.W
		10,5	13	34	≈0	≈0	Pepperl & Fuchs: KFD2-SR2-EX2.W
		Uo,V	lo, mA	Po, mW	Co, μF	Lo, mH	Notes
	Remote zero loop signal (J1 terminals 10+ and 11-)	28	2,83	80	0.083	44	

		Ui,V	li, mA	Pi, mW	Ci, nF	Li, mH	Recommended Barrier #
	FOUNDATION Fieldbus loop (J1 terminals 10+/11+ and 12-/13-)	24	380	5320	0	0	FISCO barrier
snq	Pulse output (J1 terminals 5+ and 6-)	10,6	19,1	51	≈0	≈0	Pepperl & Fuchs: KFA5-SR2-EX2.W KFA6-SR2- EX2.W
lield		10,5	13	34	≈0	≈0	Pepperl & Fuchs: KFD2-SR2-EX2.W
Foundation Fieldbus	Alarm circuits A (J1 terminals 1+ and 2-)	10,6	19,1	51	≈0	≈0	Pepperl & Fuchs: KFA5-SR2-EX2.W KFA6-SR2- EX2.W
	Alarm circuits B (J1 terminals 3+ and 4-)	10,6	19,1	51	≈0	≈0	Pepperl & Fuchs: KFA5-SR2-EX2.W KFA6-SR2- EX2.W
		Uo,V	lo, mA	Po, mW	Co uF	Lo mH	Notes
	Remote zero loop signal (J1 terminals 8+ and 9-)	8,03	0,81	6,5	8,4	1215	

		Ui,V	li, mA	Pi, mW	Ci, nF	Li, µH	Recommended Barrier #
tive Alarms	Inductive High Alarm circuits (terminals «+» and «-») – for connection of circuits Pepperl+Fuchs mod. SJ 3,5-SN type 2	10,6	19,1	51	30	100	Pepperl & Fuchs:KFA5-SR2-EX2.W or KFA6-SR2-EX2.W
Ц	Inductive Low Alarm circuits (terminals «+» and «-») – for connection of circuits Pepperl+Fuchs mod. SJ 3,5-SN type 2	10,6	19,1	51	30	100	Pepperl & Fuchs:KFA5-SR2-EX2.W or KFA6-SR2-EX2.W

Code	Applica														
Pos.	3809	3810	DASE	MODEL	1	ORIENTAT									
1-10			DASE	WODEL	-			Std Accura	acv						
	x		380	9				2% F.S. or							
		x	381					5% F.S. or							
V			MODE	L REVIS	SION										
	x	×	G	Redes	signed										
VI			MATE	RIAL & I	MATERIA	AL CER	<u> [IFICATI</u>	ON							
	x	x	Α		SS Dual C										
	x	×	В		SS Dual C										
	x	×	С					tificate 3.1	- CODE 5)*					
	x		D		SS Dual C										
	x		E					//Material 0							
	×		F	316L S	3S Dual C	ert - E/TF	E lined w	//Material 0	Certificate	3.1 - CO	DE 5*				
	×	x	G	316L S	SS Dual C	ert - CRN	I								
1	×	x	н	316L S	3S Dual C	≎ert w/Mat	erial Cert	tificate 3.1	- CRN						
1	x		J	316L S	SS Dual C	ert w/Mat	erial Cert	tificate 3.1	- CODE 5	;* - CRN					
1	x		к	Hastel	lloy C-276	ง w/Materi	al Certific	ate 3.1							
1	x		L					ate 3.1 - C	RN						
1	x		M		el 625 w/N										
			N		el 625 w/N										
	x														
	×		P		um Grade					*	* Pressure	bound mat	erial from \	Nestern Eu	urope,
	×		Q	Titaniu	ım Grade	II w/Mate	rial Certifi	icate 3.1 -	CRN		Japan, Ca	inada or U	SA.		
VII			CONS	TRUCTI	ON										
	x	x	Α	Flange	e RF with	Std Conn	ection Siz	ze							
	x		В	Flange	e RF with	Oversized	d Connect	tion							
	x		С	Flange	e RF with	Connectio	on 2 times	s the Std S	ize						
	x	x	D		ded Fema										
	x		E			ile High P	ressure 2	500LBS D	esign						
	x		F		ded Male		э т								
	×		G H		ded Fema			s the Std S	izo						
	x		л J					s the Std S							
	×		5	riange	Zixi wiuli	Connectit			120						
VIII			METE	<u>R and C</u>	ONNEC	TION SIZ	<u>'E</u>								
& IX										INECTION S	SIZES		3809G &	, 	
								380	9G				3809G & 3810G	3809G	3810G
					Std Conn	Oversized	Connection 2x Std	Connection 3x Std	Connection 4x Std	Lined	THREADED FEMALE			THREADED	
					Sz	Conn	Size	Size	Size	Meter	NPT -		FEMALE -	FEMALE -	
				METER	WELD NECK	WELD NECK	WELD NECK	WELD NECK	WELD NECK	SLIP-ON	H	THREADED	ST'D PRESSURE	ST'D PRESSURE	WELD NECK
			CODE	SIZE	FLANGED	FLANGED	FLANGED		FLANGED			MALE NPT			FLANGED
	х		00	0	1/2"	3/4"	1"				1/2"	1"			
	х		01	1	1/2"	3/4"	1"				1/2"	1"			
	X		02 03	2	1/2"	3/4"	1"				1/2"	1"			
	X X		03	3 4	1/2" 1/2"	3/4" 3/4"	1" 1"				1/2" 1/2"	1" 1"			
	x		05	5	1/2"	3/4"	1"				1/2"	1"			
1	x	x	07	7	1/2"	3/4"	1"	1.5"	2"	1/2"	1/2"	1"	1/2"	3/4"	1/2"
1	х	x	08	8	1/2"	3/4"	1"	1.5"	2"	1/2"	1/2"	1"	1/2"	3/4"	1/2"
1	х	x	10	10	1"	1.5"	2"			1"	1"	1.5"	1"		1"
1	X	X	12	12	1.5"	2"				1.5"	1.5"	2.5"	1.5"		1.5"
1	X	X	13	13	2"	3"			6666666	2"			2"		2"
		I I	15	15	2"	⊿"			1						
	x x		15 16	15 16	3" 4"	4"									

Model Code Table continued on next page

Sample Standard Model Code

I-İV	V	VI	VII	VIII & IX	Х	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX
3809	G	Α	В	02										

Code Pos.	Applica 3809	able for 3810											
X			MAXIMU	IM FLOW	(Based C	n Water At	Standard Co	onditions for	316SS Meter	r)			
						38	09G Unline	d Meters					
			CODE		for Low Flow ELF Meter								
				Size 0	Size 1	Size 2	Size 3	Size 4	Size 5				
	х		0	0.96 l/h	1.3 l/h	3.6 l/h	10 l/h	21 l/h	42 l/h				
				0:	0: 0		or larger Met		0: 45	0:			
	x		A	Size 7 25 l/h	Size 8 250 l/h	Size 10 1200 l/h	Size 12 4000 l/h	Size 13 6500 l/h	Size 15 20.000 l/h	Size 16 49.000 l/h			
	x		B	65 l/h	400 l/h	1500 l/h	6000 l/h	9500 l/h	30.000 l/h	70.000 l/h			
	х		c	130 l/h	650 l/h	2400 l/h	8000 l/h	12.000 l/h	40.000 l/h	100.000 l/h			
	х		D	200 l/h	1000 l/h	3500 l/h	10.000 l/h	20.000 l/h					
					3809G	- E/TFE Li	ned Meters		1				
			CODE	Size 7	Size 8	Size 10	Size 12	Size 13	1				
	х		А	110 l/h	250 l/h	1400 l/h	3000 l/h	6000 l/h	1				
	х		В	170 l/h	420 l/h	2000 l/h	4000 l/h	8000 l/h					
	х		С		500 l/h	2400 l/h	5000 l/h	12.000 l/h					
	х		D		850 l/h	3000 l/h	6000 l/h	15.000 l/h	J				
			CODE			3810G	i		1				
			CODE	Size 7	Size 8	Size 10	Size 12	Size 13					
		х	Α	25 l/h	250 l/h	1200 l/h	4000 l/h	6500 l/h					
		х	В	65 l/h	400 l/h	1500 l/h	6000 l/h	9500 l/h					
		x	C	130 l/h	650 l/h	2400 l/h	8000 l/h	12.000 l/h					
		х	D	200 l/h	1000 l/h	3500 l/h	10.500 l/h	20.000 l/h	J				
XI				CTION TY		// //							
	X	x	A B						as Viton/Teflon	ı O-rings) 8/Teflon O-rings			
	x x	x x	C C						s Viton/Teflon (
	x	x								/Teflon O-rings)			
	×			NPT-Male									
	x	х	F	ANSI 150L									
	x	×		ANSI 300L ANSI 600L									
	x x	x	H	DIN PN40									
	x		ĸ	JIS B2220									
	x		Ĺ	JIS B2220									
	x					bow Outlet							
	x		N P			bow Outlet							
	x		P	ANSI 600L	BS RF - EI	bow Outlet							
XII			SCALE	NSCRIPT	ION/FLUI	D			_				
			CODE	SC/			FLU						
	x	x	A	0	% Scale / I		Liq						
	x x	x x	B C		% Scale / I % Scale / I			as i Viscosity					
	x		<u> </u>		- %and/or		Liquid , H						
	x		E	Dual	- %and/or	Direct		as					
	x		F	Dual	- %and/or	Direct	Liquid , H	i Viscosity	J				

Model Code Table continued on next page

Standard	

I-IV	V	VI	VII	VIII & IX	Х	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX
3809	G	Α	В	02	В	F	С							

Code	Applic	able for	
Pos.	3809	3810	
XIII			METER ACCURACY
	x	x	A 5% Full Scale
	x		B 2% Full Scale
	x		C 1% Full Scale
		x	D 6 VDI
	x		E 2.5 VDI
	x		F 1.6 VDI
	x		G 4 VDI
	×		H 3% Full Scale
XIV			INDICATOR CONFIGURATION
	x	x	1 Aluminum Housing
	x	x	2 316SS Housing
	x		3 X-proof SS Housing
	x		5 316SS Housing, High Temperature Design
	×		6 X-Proof SS Housing, High Temperature Design
	×		8 Al - Housing - Shatterproof Window
	×		9 SS - Housing - Shatterproof Window
XV			ELECTRONICS CONFIGURATION
	x	x	A Indicator only
	×		B Inductive Alarm, 1 Switch*
	x		C Inductive Alarm, 2 Switches*
	×		D Transmitter, 4 - 20 mA / HART compatible
	x		E Transmitter, 4 - 20 mA / HART compatible w/Pulse Output & Alarm Contacts
	×		F Transmitter, 4 - 20 mA / HART compatible w/ Inductive Alarm 1 Sw*
	x		G Transmitter, 4 - 20 mA / HART compatible w/ Inductive Alarm 2 Sw*
	×		H Transmitter, 4 - 20 mA / HART compatible + LOI (Digital Display)
	x		J Transmitter, 4 - 20 mA / HART compatible w/Pulse Output & Alarm Contacts + LOI (Digital Display)
	x		K Transmitter, 4 - 20 mA / HART compatible w/ Inductive Alarm 1 Sw + LOI (Digital Display)*
	x		L Transmitter, 4 - 20 mA / HART compatible w/ Inductive Alarm 2 Sw +LOI (Digital Display)*
	×		M Foundation Fieldbus Transmitter
	x		N Fieldbus Transmitter w/Pulse Output & Alarm Contacts
	x		P Fieldbus Transmitter w/Inductive Alarm 1 Sw*
	x		Q Fieldbus Transmitter w/Inductive Alarm 2 Sw*
	x		R Fieldbus Transmitter + LOI (Digital Display)
	x		S Fieldbus Transmitter w/Pulse & Alarm Contacts + LOI (Digital Display)
	x		T Fieldbus Transmitter w/Inductive Alarm 1 Sw + LOI (Digital Display)*
	x		U Fieldbus Transmitter w/Inductive Alarm 2 Sw + LOI (Digital Display)*
			*Relay Power Supply Recommended
	ļ		
XVI			ELECTRICAL CONNECTION
	×	×	0 None
	x		1 Cord Connector 8-11 mm
	×		2 M20x1.5
	x		3 1/2" NPT-F
	×		4 3/4" NPT-F (X-Proof Housing Only)
L	•		

Model Code Table continued on next page

Sample Standard Model Code

I-IV	V	VI	VII	VIII & IX	X	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX	XX
3809	G	Α	В	02	В	F	С	С	3	Е	4				

Code	Applica	able for			
Pos.	3809	3810			
XVII			<u>CERTS</u>	(APPROVAL TYPE)	
	x	x	0	None	
				ATEX / IECEX	North American Approvals
	×		AB	Zone 2, Non-incendive/non-sparking	
	x			Zone 1, Intrinsically Safe Zone 1, Flame-proof XP - IIC	Div 1 / Zone 1, Flame-proof XP
	x				
	×		D	Nepsi - Zone 2, Non-incendive/non-sparking	
	×		E	Nepsi - Zone 1, Intrinsically Safe	
	×			Nepsi - Zone 1, Flame-proof XP - IIC	
	×		G	KOSHA - Zone 2, Non-incendive/non-sparking	
	×		H	KOSHA - Zone 1, Intrinsically Safe	
	×			KOSHA - Zone 1, Flame-proof XP - IIC	
	×		ĸ	CCOE - Zone 2, Non-incendive/non-sparking	
	×		L	CCOE - Zone 1, Intrinsically Safe	
	×		М	CCOE - Zone 1, Flame-proof XP - IIC	
	×		N	TR CU Ex Zone 2, Non-incendive/non-sparking (Cus	o <i>i</i>
	×		P	TR CU Ex Zone 1, Intrinsically Safe (Custom Union in	
	×		Q	TR CU Ex Zone 1, Flameproof XP - IIC (Custom Unio	e ,
	×		R S	TR CU Indicator only (Custom Union including Russi	
	×		T	UL - Div 1 / Zone 1, Intrinsically Safe (4-20 mA transr UL - Div 2 / Zone 2, Non-Incendive / Non-Sparking (a	
	x x		Ů	FM - Div 1 / Zone 1, Intrinsically Safe (inductive alarr	
	x		v	ATEX - Zone 1 / Zone 2, Non-Electrical	15)
XVIII				/ FLOW CONTROLLER	
	x	x	0		
	×	x	A	Valve on Inlet - Viton Seals	
	×	x	В	Valve on Inlet - Teflon(Low flow valve Kalrez/Tef	ion)
	x	x	C	Valve on Outlet - Viton Seals	- fl)
	×	×	D	Valve on Outlet - Teflon(Low flow valve Kalrez/T Std Press FLOW CONTROLLER on Inlet - Vitor	•
	×	x	E		
	×	x	-	Std Press FLOW CONTROLLER on Inlet - Tefle	
	×	x	G	High Press FLOW CONTROLLER on Inlet - Tef	
	x x	x x	H J	Std Press FLOW CONTROLLER on Outlet - Vit Std Press FLOW CONTROLLER on Outlet - Ter	
	x	x	J K	High Press FLOW CONTROLLER on Outlet - Te	
	^		ĸ	High Fless FLOW CONTROLLER ON Outlet - In	ellon/Railez Seals
XIX			PROCE	SSES with CERTIFICATES (Group 1)	
	x	x	0	None	Note
	×		Α	Positive Material Identification (PMI) - 3.1 (w/o Ca	(bon) 2.1 - Declaration of Compliance (EN 1020
	×		В	Positive Alloy Material Identification (PAMI) - 3.1 (Carbon) 3.1 = Inspection Certificate (EN 10204)
	×			NACE MR0175/103 - 2.1	S.T = inspection certificate (EN 10204)
	x		D	NACE MR0175/103 - 2.1 & PMI - 3.1 (w/o Carbon)	
	×		E	NACE MR0175/103 - 2.1 & PAMI - 3.1 (Carbon)	
XX			PROCE	SSES with CERTIFICATES (Group 2)	Additional Services
	x	x	0	None	1 Clean for Oxygen Service 2.1
	x		Α	Radiographic Examination Report 3.1	2 Hazardous Location Certificate
	x		В	Liquid Dye-Penetrant Test Report 3.1	3 Certificate of Conformance 2.1
	x		С	Radiographic Exam 3.1 & Liquid Dye-Penetrant Te	
					5 Pressure Test Certificate 2.2 6 Commercial Clean

Notes: The CRN approved meters are designed per ASME 31.3, constructed using materials compliant with ASTM/ASME specification and welding according to ASME IX standard.

The CRN approvals are valid for standard model code option and special model code options based on approval granted to the pressure vessel design and no changes to the pressure vessel design.

Sample Standard Model Code															
I-IV	V	VI	VII	VIII & IX	Х	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX	XX
3809	G	Α	В	02	В	F	С	С	3	E	4	С	0	Α	В

Service and Support

Brooks is committed to assuring all of our customers receive the ideal flow solution for their application, along with outstanding service and support to back it up. We operate first class repair facilities located around the world to provide rapid response and support. Each location utilizes primary standard calibration equipment to ensure accuracy and reliability for repairs and recalibration and is certified by our local Weights and Measures Authorities and traceable to the relevant International Standards.

Visit www.BrooksInstrument.com to locate the service location nearest to you.

START-UP SERVICE AND IN-SITU CALIBRATION

Brooks Instrument can provide start-up service prior to operation when required. For some process applications, where ISO-9001 Quality Certification is important, it is mandatory to verify and/or (re)calibrate the products periodically. In many cases this service can be provided under in-situ conditions, and the results will be traceable to the relevant international quality standards.

CUSTOMER SEMINARS AND TRAINING

Brooks Instrument can provide customer seminars and dedicated training to engineers, end users, and maintenance persons. Please contact your nearest sales representative for more details. Due to Brooks Instrument's commitment to continuous improvement of our products, all specifications are subject to change without notice.

TRADEMARKS Brooks Instrument, LLC All other trademarks are the property of their respective owners.

DS-VA-MT3809G-eng/2021-6

Global Headquarters Brooks Instrument 407 West Vine Street Hatfield, PA 19440-0903 USA Toll-Free (USA): 888-554-FLOW T: 215-362-3500 BrooksAM@BrooksInstrument.com

A list of all Brooks Instrument locations and contact details can be found at www.BrooksInstrument.com

©Copyright 2021 Brooks Instrument, LLC All rights reserved. Printed in U.S.A.