4/3, 4/2 and 3/2 directional valves with wet pin DC or AC solenoids

Model WE 6 ../.E

Nominal size 6
Series 6X
Maximum operating pressure 350 bar (5100 PSI)
Maximum flow $80 \mathrm{~L} / \mathrm{min}$ (21 GPM) - DC
Maximum flow 60 L/min (16GPM) - AC

List of contents

Contents

Features
Ordering details
Page
1

2
Symbols
Standard types

$$
3
$$

Function, section
Technical data
Characteristic curves
Performance limits
Unit dimensions
Plug-in connectors

Features

- Direct solenoid operated directional spool valve, high performance version
- Porting pattern to DIN 24340 form A, without locating pin hole (standard); NFPA T3.5.1 MR1 and ANSI B93.7 D03
- Porting pattern to ISO 4401, with locating pin hole, (ordering code .../60 at the end of the valve type code); NFPA T3.5.1 MR1 and ANSI B93.7 D03
- For subplates see catalogue sheet RE 45052 (separate order)
- Wet pin DC or AC solenoids with removable coil
- Solenoid coil can be rotated through 90°
- It is not necessary to open the pressure tight chamber when changing the coil
- Electrical connections either as individual or central connections
- Hand override, optional
- Soft switching version, see RE 23183
- Inductive limit switch (contact or inductive), see RE 24830

Ordering details

[^0]Symbols

$\stackrel{1}{1 / 4}=A$
$x=c$

(in) (a) (1)

$4 \cdot{ }^{1}{ }^{1} \neq F=F$
$\left.4 \cdot \frac{1}{1} \right\rvert\, X=G$

X XPT

${ }^{6)}$ Example: Spool E with switched position "a"ordering code ..EA..
${ }^{7}$ Symbol E1-: P - A/B pre-opening, Attention: Take pressure intensification with differential cylinders into account!

Standard types

Type	Material number
4WE 6 J6X/EG12N9K4	R900567496
3WE 6 A6X/EG24N9K4	R900561180
3WE 6 B6X/EG24N9K4	R900561270
4WE 6 C6X/EG24N9K4	R900561272
4WE 6 C6X/OFEG24N9K4	R900564107
4WE 6 D6X/EG24N9K4	R900561274
4WE 6 D6X/0FEG24N9K4	R900567512
4WE 6 E6X/EG24N9K4	R900561278
4WE 6 EA6X/EG24N9K4	R900561280
4WE 6 EB6X/EG24N9K4	R900561281
4WE 6 G6X/EG24N9K4	R900561282
4WE 6 H6X/EG24N9K4	R900561286
4WE 6 HA6X/EG24N9K4	R900549534
4WE 6 J6X/EG24N9K4	R900561288
4WE 6 M6X/EG24N9K4	R900577475
4WE 6 Q6X/EG24N9K4	R900561292
4WE 6 R6X/EG24N9K4	R900571012
4WE 6 T6X/EG24N9K4	R900934414
4WE 6 U6X/EG24N9K4	R900572785
4WE 6 W6X/EG24N9K4	R900568233
4WE 6 Y6X/EG24N9K4	R900561276

Type	Material number
4WE 6 D6X/EW110N9K4	R900551704
4WE 6 D6X/OFEW110N9K4	R900552321
4WE 6 E6X/EW110N9K4	R900558641
4WE 6 J6X/EW110N9K4	R900551703
3WE 6 A6X/EW230N9K4	R900915672
4WE 6 C6X/EW230N9K4	R900913132
4WE 6 D6X/EW230N9K4	R900909559
4WE 6 D6X/OFEW230N9K4	R900915095
4WE 6 E6X/EW230N9K4	R900912492
4WE 6 H6X/EW230N9K4	R900912494
4WE 6 J6X/EW230N9K4	R900911762
4WE 6 Y6X/EW230N9K4	R900909415

Function, section

Type WE directional valves are solenoid operated directional spool valves. They control the start, stop and direction of flow.
Essentially the directional control valves consist of housing (1), one or two solenoids (2), the control spool (3), and one or two return springs (4).
In the de-energised condition the control spool (3) is held in the neutral or initial position by means of return springs (4) (except for impulse spools). The control spool (3) is operated via wet pin solenoids (2).

To guarantee satisfactory operation care should be taken to ensure that the solenoid pressure chamber is filled with oil.
The force of the solenoids (2) acts via the plunger (5) on the control spool (3) and pushes this from its neutral position into the required end position. This permits flow from P to A and B to T or P to B and A to T.
When solenoid (2) is de-energised, the control spool (3) is returned to its neutral position by means of the return springs (4).
An optional hand override (6), allows movement of the control spool (3) without energising the solenoid.

Type 4WE 6.. 6X/O... (only possible for symbols A, C and D)
This version is for directional control valves with two switched positions and two solenoids without detent. There is no definable switched position when the solenoids are de-energised.
Type 4WE 6.. 6X/OF... (impulse spool, only for symbols A, C and D)
This version is for directional control valves with two switched positions, two solenoids and a detent. Both swtiched positions are thus fixed alternately and there is no need to continually energise the solenoid.

Note:

Pressure peaks in the tank line to two or more valves can, with valves with detents, lead to unintended spool movements! It is therefore, recommended that a separate tank line is used or that a check valve is fitted into the tank line.
Cartridge throttle (type 4WE 6..6X/.../B..)
If, due to particular operating conditions during the switching sequences, flows can occur which are larger that the valve performance curves allow, then it is necessary to fit a cartridge throttle.
This is inserted in the P channel of the directional control valve.

Model 4WE 6 E6X/...E...

Technical data (for applications outside these parameters, please consult us!)

General					
Installation			Optional		
Ambient temperature $\quad{ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$			$\begin{aligned} & -30 \text { to }+50(-22 \text { to }+122)-\text { NBR seals } \\ & -20 \text { to }+50(-4 \text { to }+122)-\text { FKM seals } \end{aligned}$		
Weight	Valve with 1 solenoid	kg (lbs.)	1.45 (3.2)		
	Valve with 2 solenoids	kg (lbs.)	1.95 (4.3)		
Hydraulic					
Max. operating pressure	Ports A, B, P	bar (PSI)	350 (5100)		
	Ports T	bar (PSI)	$210 \text { (3050) - DC; } 160 \text { (2320) - AC }$ With symbols A and B , port T must be used as a drain port if the operating pressure is above the permitted tank pressure.		
Max. flow		L/min (GPM)	80 (21) - DC; 60 (15.8) - AC		
Flow cross-section (switched position 0)	For symbol Q	mm^{2} (in ${ }^{2}$)	Approx. 6\% of the nominal cross-section		
	For symbol W	$\mathrm{mm}^{2}\left(\mathrm{in}^{2}\right)$	Approx. 3\% of the nominal cross-section		
Pressure fluid			Mineral oil (HL, HLP) to DIN $51524{ }^{\text {1) }}$; Fast bio-degradable pressure fluids to VDMA 24568 (also see RE 90221); HETG (rape seed oil) ${ }^{1 \text { 1 }}$; HEPG (polyglycols) ${ }^{2)}$; HEES (synthetic ester) ${ }^{2)}$; Other pressure fluids on request		
Pressure fluid temperature range $\quad{ }^{\circ} \mathrm{C}{ }^{\circ} \mathrm{F}$)			$\begin{aligned} & -30 \text { to }+80(-22 \text { to }+176)-\text { NBR seals } \\ & -20 \text { to }+80(-4 \text { to }+176)-\text { FKM seals } \end{aligned}$		
iscosity range $\mathrm{mm}^{2} / \mathrm{s}$ (SUS)			2.8 to 500 (35 to 2320)		
ISO code cleanliness class			Maximum permissible degree of contamination of fluid to ISO 4406 (c) class 20/18/15 ${ }^{\text {3) }}$		
Electrical					
Voltage type			DC	AC 50/60 Hz	
Available voltages ${ }^{4)}$ (for ordering details of AC solenoids see below)			12, 24, 96, 205	110, 230	
Voltage tolerance (nominal voltage)		\%	± 10		
Power consumption		W	30		
Holding power		VA	-		
Switch-on power VA			-	220	
Duty			Continuous	Continuous	
Switching time to ISO 6403	ON	ms	25 to 45	10 to 20	
	OFF	ms	10 to 2	15 to 40	
Switching frequencies Cycles/h			UP to 15000	UP to 7200	
Protection to DIN EN $60529{ }^{\text {5) }}$			IP 65	IP 65	
Max. coil temperature ${ }^{6)} \quad{ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$			150 (302)	180 (356)	
${ }^{1)}$ Suitable for NBR and FKM seals			Note:		
${ }^{2)}$ Only suitable for FKM seals			AC solenoids may be used for 2 or 3 types of supply; e.g. solenoid type W110 for: $110 \mathrm{~V}, 50 \mathrm{~Hz} ; 110 \mathrm{~V}, 60 \mathrm{~Hz}$; $120 \mathrm{~V}, 60 \mathrm{~Hz}$	Ordering details	
${ }^{3}$) Adhered to in hydraulic systems. Effective filtration prevents malfunction and, at the same time, increases the service life of components.				W110	$\begin{aligned} & 110 \mathrm{~V}, 50 \mathrm{~Hz} \\ & 110 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 120 \mathrm{~V}, 60 \mathrm{~Hz} \end{aligned}$
${ }^{4}$) Other voltages on request				W230	$\begin{aligned} & 230 \mathrm{~V}, 50 \mathrm{~Hz} \\ & 230 \mathrm{~V}, 60 \mathrm{~Hz} \end{aligned}$
${ }^{5)}$ With fitted and locked plug-in connector \quad —					
${ }^{6)}$ Due to the occuring surface temperatures of the solenoid coils, the European standards EN563 and EN982 must be taken into account!			With electrical connections the protective conductor (PE $\stackrel{\perp}{ \pm}$) must be connected according to the relevant regulations.		

Characteristic curves - measured with HLP46, $\vartheta_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F} \pm 41^{\circ} \mathrm{F}\right)$

7 Symbol "R" in switched position B - A
8 Symbol "G" and "T" in mid position P-T
9 Symbol " H " in mid position P - T

Symbols	Flow direction			
	P - A	P - B	A - T	B - T
A; B	3	3	-	-
C	1	1	3	1
D; Y	5	5	3	3
E	3	3	1	1
F	1	3	1	1
T	10	10	9	9
H	2	4	2	2
J; Q	1	1	2	1
L	3	3	4	9
M	2	4	3	3
P	3	1	1	1
R	5	5	4	-
V	1	2	1	1
W	1	1	2	2
U	3	3	9	4
G	6	6	9	9

Performance limits - measured with HLP46, $\vartheta_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F} \pm 41^{\circ} \mathrm{F}\right)$

Attention!

The given switching power limits are for applications with two flow directions (e.g. from P to A and simultaneous return flow from B to T).
Due to the flow forces active within the valves the permissible switching power limit may be significantly less if there is only one direction of flow (e.g. from P to A and port B blocked)! (Please consult us for applications of this kind.)
The switching power limits were measured with the solenoids at operating temperature, 10% under voltage and without tank back pressure.

DC solenoid	
Characteristic curve	Symbol
1	$\mathrm{~A} ; \mathrm{B}^{1)}$
2	V
3	$\mathrm{~A} ; \mathrm{B}$
4	$\mathrm{~F} ; \mathrm{P}$
$\mathbf{5}$	J
6	$\mathrm{G} ; \mathrm{H} ; \mathrm{T}$
$\mathbf{7}$	$\mathrm{A} / \mathrm{O} ; \mathrm{A} / \mathrm{OF} ; \mathrm{L} ; \mathrm{U}$
$\mathbf{8}$	$\mathrm{C} ; \mathrm{D} ; \mathrm{Y}$
9	M
10	E; E1-2) $; \mathrm{R}^{31} ; \mathrm{C} / \mathrm{O} ; \mathrm{C} / \mathrm{OF}$ D/O; D/OF; Q; W

[^1]Performance limits - measured with HLP46, $\vartheta_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F} \pm 41^{\circ} \mathrm{F}\right)$

Attention!

The given switching power limits are for applications with two flow directions (e.g. from P to A and simultaneous return flow from B to T).
Due to the flow forces active within the valves the permissible switching power limit may be significantly less if there is only one direction of flow (e.g. from P to A and port B blocked)! (Please consult us for applications of this kind.)
The switching power limits were measured with the solenoids at operating temperature, 10% under voltage and without tank back pressure.

AC solenoid		
Characteristic curve	Solenoid voltage	
11 to 18	W110	$110 \mathrm{~V} ; 50 \mathrm{~Hz}$
		$120 \mathrm{~V} ; 60 \mathrm{~Hz}$
	W230	$230 \mathrm{~V} ; 50 \mathrm{~Hz}$

(other voltages on request)

AC solenoid		
Characteristic curve	Solenoid voltage	
19 to 28	W 110	$110 \mathrm{~V} ; 60 \mathrm{~Hz}$
	W 230	$230 \mathrm{~V} ; 60 \mathrm{~Hz}$

[^2]| AC solenoid - 50 Hz | |
| :---: | :---: |
| Characteristic curve | Symbol |
| 11 | A; B1) |
| 12 | V |
| 13 | A; B |
| 14 | F; P |
| 15 | G; ${ }^{\text {T }}$ |
| 16 | H |
| 17 | A/O; A/OF; C/O; C/OF D/O; D/OF; E; E1-2); J; L; M; Q; R3); U; W |
| 18 | C; D; Y |
| ${ }^{1)}$ With hand override
 2) P - A/B pre-opening
 ${ }^{3)}$ Return flow from actuator to tank | |

AC solenoid $-60 \mathrm{~Hz}$	
Characteristic curve	Symbol
19	$\mathrm{~A} ; \mathrm{B}^{1)}$
20	V
21	$\mathrm{~A} ; \mathrm{B}$
22	$\mathrm{~F} ; \mathrm{P}$
23	$\mathrm{G} ; \mathrm{T}$
24	$\mathrm{~J} ; \mathrm{L} ; \mathrm{U}$
25	$\mathrm{~A} / \mathrm{O} ; \mathrm{A} / \mathrm{OF} ; \mathrm{Q} ; \mathrm{W}$
26	$\mathrm{C} ; \mathrm{D} ; \mathrm{Y}$
27	H
28	C/O; C/OF; D/O; D/OF; E
E1-2); M; R)	

[^3]Performance limits - measured with HLP46, $\vartheta_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F} \pm 41^{\circ} \mathrm{F}\right)$

Attention!

The given switching power limits are for applications with two flow directions (e.g. from P to A and simultaneous return flow from B to T).
Due to the flow forces active within the valves the permissible switching power limit may be significantly less if there is only one direction of flow (e.g. from P to A and port B blocked)! (Please consult us for applications of this kind.)
The switching power limits were measured with the solenoids at operating temperature, 10% under voltage and without tank back pressure.

DC solenoid	
Characteristic curve	Solenoid voltage
1 to 11	$110 ; 180 \mathrm{~V}$

Flow in L/min (GPM)

DC solenoid	
Characteristic curve	Solenoid voltage
1 to 12	$42 ; 80 ; 220 \mathrm{~V}$

DC solenoid	
Characteristic curve	Symbol
1	$\mathrm{~A} ; \mathrm{B}$
2	V
3	$\mathrm{~F} ; \mathrm{P}$
4	$\mathrm{~J} ; \mathrm{L} ; \mathrm{U}$
5	G
6	T
7	H
8	$\mathrm{D} ; \mathrm{C}$
9	M
10	$\mathrm{C} / \mathrm{O} ; \mathrm{C} / \mathrm{OF} ; \mathrm{D} / \mathrm{O} ; \mathrm{D} / \mathrm{OF} ;$
$\mathrm{E} ; \mathrm{E} 1-; \mathrm{R}, \mathrm{Q} ; \mathrm{W}$	

DC solenoid	
Characteristic curve	Symbol
1	$\mathrm{~A} ; \mathrm{B}$
2	V
3	$\mathrm{~F} ; \mathrm{P}$
4	$\mathrm{~J} ; \mathrm{L} ; \mathrm{U}$
5	$\mathrm{~A} / \mathrm{O} ; \mathrm{A} / \mathrm{OF}$
6	E
7	T
8	G
9	H
10	$\mathrm{D} ; \mathrm{C}$
11	M
12	C/O; C/OF; D/O; D/OF;
E1-; R, Q; W	

Unit dimensions: valve with a DC solenoid - dimensions in millimeters (inches)

[^0]: 1) When connecting to an AC supply a DC solenoid must be used which is controlled via a rectifier (see table on the left).
 With an individual connection a large plug-in connectorwith built-in rectifier can be used (separate order).
 2) Also available with M12 $\times 1$ plug connection (only version ${ }^{\prime} . . . \mathrm{G} 244 . .{ }^{4}$), ordering details and plug-in connector see RE 08010
 ${ }^{3)}$ Plug-in connectors must be ordered separately (see page 4).
 3) Angled plug-in connector Mat. No. R900005538 (separate order)
 ${ }^{5)}$ Locating pin 3×8 DIN EN ISO 8752, Mat. No. R900005694 (separate order)
[^1]: ${ }^{1)}$ With hand override
 ${ }^{2)} \mathrm{P}$ - A/B pre-opening
 ${ }^{3)}$ Return flow from actuator to tank

[^2]: (other voltages on request)

[^3]: ${ }^{1)}$ With hand override
 ${ }^{\text {2) }} \mathrm{P}-\mathrm{A} / \mathrm{B}$ pre-opening
 ${ }^{3}$) Return flow from actuator to tank

